Accepted Manuscript

Enhancement of momentum transfer of bubble swarms using an ejector with water injection

Hyunduk Seo, Aliyu M. Aliyu, Kyung Chun Kim

PII:	S0360-5442(18)31569-X
DOI:	10.1016/j.energy.2018.08.049
Reference:	EGY 13525
To appear in:	Energy
Received Date:	30 April 2018
Accepted Date:	06 August 2018

Please cite this article as: Hyunduk Seo, Aliyu M. Aliyu, Kyung Chun Kim, Enhancement of momentum transfer of bubble swarms using an ejector with water injection, *Energy* (2018), doi: 10.1016/j.energy.2018.08.049

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Enhancement of momentum transfer of bubble swarms using
2	an ejector with water injection
3	Hyunduk Seo ¹ , Aliyu M. Aliyu ² , Kyung Chun Kim ^{* 1}
4	¹ School of Mechanical Engineering, Pusan National University, 609-735, Busan, Republic of Korea
5	² Gas Turbine and Transmissions Research Centre, Faculty of Engineering, University of Nottingham, NG7
6	2RD, United Kingdom
7	* Corresponding author: Kyung Chun Kim, kckim@pusan.ac.kr
8	
9	Highlights
10	1. Bubble swarms characteristics generated from ejectors are experimentally investigated
11	2. Digital image processing is carried out to obtain statistical data of bubble swarm
12	3. Momentum transfer is demonstrated by a buoyancy experiment with a spherical model
13	4. Uniform bubble swarm is realized by the proposed ejector with water injection
14	
15	Abstract
16	This paper presents the application and a comparative study of two ejector configurations to enhance the
17	momentum transfer of submerged bubble swarms generated in a water tank. High-speed photography was used to
18	measure the bubble rise velocity profiles and bubble size distribution from captured images. The volumetric
19	flowrate of air was varied from 2 to 15 L/min, and water was supplied at 70 L/min for the case with water injection.
20	Three different cases were selected to conduct bubble swarm visualization: one with a plain nozzle, one with an
21	air-driven ejector, and one with a water-driven ejector. Buoyancy experiments were also carried out to characterize
22	momentum transfer capability. The plain nozzle and air-driven ejector cases make ergodically large bubbles.

- 23 However, in the case with water injection, small bubbles were generated through the suction and mixing chamber
- 24 inside the ejector, and evenly sized broken-up bubbles came out. Due to the differences in bubble generating

Download English Version:

https://daneshyari.com/en/article/8070833

Download Persian Version:

https://daneshyari.com/article/8070833

Daneshyari.com