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This brief proposes a real-time energy management approach for a hybrid tracked vehicle to adapt to
different driving conditions. To characterize different route segments online, an onboard learning al-
gorithm for Markov Chain models is employed to generate transition probability matrices of power
demand. The induced matrix norm is presented as an initialization criterion to quantify differences
between multiple transition probability matrices and to determine when to update them at specific road
segment. Since a series of control policies are available onboard for the hybrid tracked vehicle, the
induced matrix norm is also employed to choose an appropriate control policy that matches the current
driving condition best. To accelerate the convergence rate in Markov Chain-based control policy
computation, a reinforcement learning-enabled energy management strategy is derived by using speedy
Q-learning algorithm. Simulation is carried out on two driving cycles. And results indicate that the
proposed energy management strategy can greatly improve the fuel economy and be employed in real-
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time when compared with the stochastic dynamic programming and conventional RL approaches.
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1. Introduction

Hybird electric vehicles (HEVs) seem to be the most promising
solution to overcome the increasing energy crisis and environ-
mental pollution in recent decades [1]. Two types of energy sour-
ces, electricity and gasoline, have been placed in a HEV to make it
possible to improve fuel economy and reduce exhaust emissions
[2]. The energy management strategies are the critical technology
for HEV to achieve the best performance and energy efficiency
through power-split control [3]. One major difficulty to achieve this
goal is how to adapt to multiple driving cycles. Along with the
development of HEV, an effective and real-time energy manage-
ment strategy is necessary for HEV to accommodate different
driving conditions.

1.1. Literature review

Currently, the energy management strategies for HEV are
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mainly optimization-enabled strategies considering necessary
physical constraints [4], such as restraints on state of charge in
battery, torque and rotational speed of engine and output power of
battery and engine. Optimization-based energy management
strategies can be further divided into global optimization and real-
time optimization cases. Since the complete knowledge of the
driving cycle is predefined, dynamic programming (DP) algorithm
is employed to make a globally optimal control decision. Ref. [5]
leveraged DP to optimize the fuel economy for a velocity coupling
HEV system with eleven modes. Serrao etc. [6] compared the DP
with other two methods to demonstrate its optimality. Addition-
ally, Pontryagain’s Minimum Principle (PMP) technique is also
adopted to improve the energy efficiency of the propulsion system
via the global optimal control. A piecewise linear approximation
strategy is combined with the PMP to derive the optimal control for
plug-in HEV in Ref. [7]. Zhang etc. [8] applied PMP to optimize the
control strategy for a dual-motor-driven electric bus under three
different driving cycles. Convex programming (CP) is another global
optimization method that derives the energy management strategy
based on the convex modeling and rapid solution search. In Ref. [9],
CP is used to implement a framework of simultaneous optimal
energy storage systems sizing and energy management. Hu etc. [10]
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presented a high-efficiency CP framework to construct the swiftly
adapting charging/power management controls to wind intermit-
tency. However, the global optimization strategies can only be
feasible in off-line simulation since the driving cycle is generally
unknown in practical application.

Besides, the stochastic dynamic programming (SDP) algorithm
is also developed to search the optimal energy management
strategy for HEV through taking the random characteristics of the
vehicle speed and drivers’ behaviors into account. Ref. [11]
employed SDP to address the energy management for a series
hybrid tracked vehicle based on the Markov chain driver model. Xi
etc. [12] co-optimizes the use of energy storage for multiple ap-
plications with SDP while accounting for market and system un-
certainty. In real-time optimization, equivalent consumption
minimization strategy (ECMS) [13] and model predictive control
(MPC) [14] are two most representative optimization-based ap-
proaches. The ECMS explores the precise co-state value to achieve
the local optimization, which strongly depends on the validity of
velocity predictions [15]. For MPC, the controller presents an en-
ergy management strategy via DP, genetic algorithm, quadratic
programming, or nonlinear programming. For example, the infor-
mation provided by the onboard navigation system is utilized in the
MPC framework [16]. An adaptive approach is developed based
MPC to consider the load torque estimation and prediction in en-
ergy management problem [17]. Genetic algorithm and MPC is
combined in Ref. [18] to minimize the energy consumption.
Furthermore, a multi-layer perception is presented based on MPC
and it is proved to guarantee globally-bounded closed-loop sta-
bility [19]. Nevertheless, the performance of the MPC control is
highly influenced by the future information, such as prospective
speed or power prediction [20].

Two inspiring innovative techniques, named reinforcement
learning (RL) and game theory (GT), are also proposed to build an
optimal controller for HEVs. RL can derive a model-free and
apdative control for energy management problem [21]. And the
global optimality of the GT is evaluated in Ref. [22] via comparing
with the DP method. Liu etc. [23] proposed a bi-level control
framework to combine the predictive learning with RL to formulate
the energy management strategy. Ref. [24] presents a GT controller
with the cost penalizing fuel consumption, NOy emissions, battery
state of charge deviation, and vehicle operating conditions devia-
tion. Over the new European driving cycle, the GT controller ac-
quires the closest control performance to the existing DP controller.
Markov Chain (MC) models are quite well-suited to represent the
uncertainty in the driving environment, which can lower both the
information required for implementation and the on-board
computing burden [25]. Based on the MC models, Liu etc.
compared the control performance of RL and SDP as well as two
different RL-based algorithms [26], and the results indicated the
advantages of RL over the SDP in fuel economy and computational
time [27]. However, the issue that the popular Q-learning algorithm
overestimates action values under certain conditions is not
considered in previous energy management of HEV [28]. Mean-
while, to the best of our knowledge, combining RL algorithm with
the on-board learning MC models has not been surveyed, and the
existing RL-enabled energy management strategy cannot guar-
antee adaptive to various driving conditions.

1.2. Motivation and innovation

The main purpose of this brief is to construct a real-time energy
management strategy by a collaboration of MC-based onboard
learning algorithm and speedy Q-learning (SQL) algorithm. Three
primary contributions are presented in this paper. Firstly, an on-
board learning algorithm is proposed for MC models to learn the

transition probability of power demand in real-time. Secondly, the
induced matrix norm (IMN) is served as an initialization criterion
for MC models learning. Thus, a set of models representing different
segments of power demand can be evolved and the IMN is applied
to select control policy that matches the current driving condition
best. Finally, the SQL algorithm is developed to evaluate the on-
board learning algorithm and avoid selecting overestimated values
in control policy computation. In addition, the proposed energy
management strategy is compared with the SDP and conventional
Q-learning algorithm to estimate its performance in different
driving conditions.

1.3. Organization

The remainder of this paper is organized as follows: the induced
matrix norm and the recursive algorithm for updating the transi-
tion probability matrix are illuminated in Section 2; In Section 3,
the onboard learning algorithm for MC models learning and the
SQL algorithm are discussed; the comparative research between
different energy management strategies are conducted in Section
4; conclusions are given in Section 5.

2. Problem formulation and background

The vehicle being studied is a hybrid tracked vehicle (HTV) with
a series topology. The powertrain configuration is sketched in Fig. 1.
The main power components consist of a battery pack, an engine-
generator set (EGS), and two traction motors. EGS and battery
constitute the main power sources to propel the powertrain. For
EGS, the rated power of engine is 52 kW at the speed of 6200 rpm.
The rated output power of generator is 40 kW within the speed
range from 3000 rpm to 3500 rpm. Power split controls between
the EGS and battery are the key technologies to realize the fuel
efficiency improvement. The elementary parameters of the pow-
ertrain are shown in Table 1. The modeling of the EGS and battery is
introduced in subsection 2.1. Since the historical vehicle speed is
known in real-time, the power demand Pgep, can be calculated as
follows

Pjem = (Fr + Fi + Fa)v + Mw

Fr=mg-f

F,' =ma (1)
Fq = (CpA/21.15)7?

where F,, F; and F, are the rolling resistance, inertial force and
aerodynamic drag, respectively. m is the vehicle mass, g is the
gravity acceleration, a is the vehicle acceleration, Cp is the aero-
dynamic coefficient and A is the fronted area. M is the resisting yaw
moment, ¥ and w are the average velocity and rotational speed for
the tracked vehicle.

2.1. Optimization objective

The generator speed is selected as the state variable that can be
calculated according to the torque equilibrium constraint

dng o Te ]e
dng _ (ieg_rg> / 0.1047 (izeg + Jg> o

Ne = Ng /ie_g

where ng and n, are the rotational speeds, T; and T, are the torques
of the generator and engine, respectively, and T, is decided by the
throttle variable th(t) using the expression T, = th*interp(ng, Te, max),
wherein interp indicates the interpolation function and T, max is the
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