Accepted Manuscript

Optimal planning of capacities and distribution of electric heater and heat storage for reduction of wind power curtailment in power systems

Xing Gou, Qun Chen, Kang Hu, Huan Ma, Lei Chen, Xiao-Hai Wang, Jun Qi, Fei Xu, Yong Min

PII:	S0360-5442(18)31322-7
DOI:	10.1016/j.energy.2018.07.027
Reference:	EGY 13292
To appear in:	Energy
Received Date:	02 January 2018
Accepted Date:	07 July 2018

Please cite this article as: Xing Gou, Qun Chen, Kang Hu, Huan Ma, Lei Chen, Xiao-Hai Wang, Jun Qi, Fei Xu, Yong Min, Optimal planning of capacities and distribution of electric heater and heat storage for reduction of wind power curtailment in power systems, *Energy* (2018), doi: 10.1016/j. energy.2018.07.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Optimal planning of capacities and distribution of electric heater and
2	heat storage for reduction of wind power curtailment in power
3	systems
4	Xing Gou ¹ , Qun Chen ^{1, 2*} , Kang Hu ¹ , Huan Ma ¹ , Lei Chen ² , Xiao-Hai Wang ³ , Jun Qi ³ , Fei Xu ² ,
5	Yong Min ²
6	¹ Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department
7	of Engineering Mechanics, Tsinghua University, Beijing 100084, China
8	² State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment,
9	Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
10	³ Inner Mongolia Power (Group) CO., LTD, Hohhot 010020, China
11	
12	ABSTRACT: Integrating electric heater (EH) and heat storage (HS) into power
13	systems is a feasible solution to reduce wind power curtailment. However, most
14	researches consider the capacities optimization without their distribution. Based on a
15	practical power grid with eight buses, utilizing the DC power flow model together with
16	the capacity and operation constraints of EH, HS and other power units gives the
17	mathematic model of the integrated energy system. On this basis, applying the
18	economic benefit as the optimization objective gives the optimal capacities and
19	distribution of EH and HS to satisfy certain proportions of heat load. Besides, the
20	concept of "generalized energy storage" is put forward to provide an explanation of the
21	regulating ability of power generation and consumption of a region. The results show
22	that the economic benefit in the optimal case with the optimal distribution of EH and
23	HS is 44.65% higher compared to the case that maintains the same power transmitted
24	after installing EH and HS, and 1.76% higher than that in the case that allocates the
25	electric heaters equally. Besides, the influence of the coal price is nearly twice of the
26	HS price, and 4 times of the EH price on economic benefit.

^{*} Corresponding author, Tel. & Fax: 86-10-62796332; Email: chenqun@tsinghua.edu.cn

Download English Version:

https://daneshyari.com/en/article/8070985

Download Persian Version:

https://daneshyari.com/article/8070985

Daneshyari.com