Accepted Manuscript

Pyrolysis of cashew nutshells: Characterization of products and energy balance

Javier Ábrego, Daniel Plaza, Francisco Luño, María Atienza-Martínez, Gloria Gea

PII: S0360-5442(18)31064-8

DOI: 10.1016/j.energy.2018.06.011

Reference: EGY 13053

To appear in: Energy

Received Date: 16 April 2018 Revised Date: 31 May 2018 Accepted Date: 3 June 2018

Please cite this article as: Ábrego J, Plaza D, Luño F, Atienza-Martínez Marí, Gea G, Pyrolysis of cashew nutshells: Characterization of products and energy balance, *Energy* (2018), doi: 10.1016/j.energy.2018.06.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Pyrolysis of cashew nutshells: characterization of products and energy

balance

Javier Ábrego*, Daniel Plaza, Francisco Luño, María Atienza-Martínez, Gloria Gea

Thermochemical Processes Group (GPT), Aragón Institute for Engineering Research (I3A), Universidad

de Zaragoza, Edificio I+D, C/ Mariano Esquillor s/n, 50018 Zaragoza, Spain

*Corresponding Author, abrego@unizar.es

ABSTRACT

Cashew cultivation leads to the generation of large amounts of nutshells. In order to determine whether

pyrolysis could be a suitable method for the valorization of this agricultural residue, cashew nutshells

(CNS) from Burkina Faso were pyrolyzed in the temperature range between 400 and 600 °C in a

laboratory-scale fixed bed reactor. The solid, liquid and gaseous fractions were quantified and

characterized, with special focus on the solid product. Recovery of the cashew nutshell liquid (CNSL)

was accomplished during pyrolysis separately from the pyrolysis liquid. Results suggest that, except for

the aqueous fraction, all the products obtained from pyrolysis are suitable for fuel purposes, and that part

of the CNSL can be recovered below 200 °C during the heating process. A preliminary energy balance of

the process shows that burning the gases can provide the energy necessary for the process at a pyrolysis

temperature of 500 °C.

Keywords: Cashew nutshell; Pyrolysis; Carbonization; Charcoal; CNSL.

1. Introduction

The cashew (Anacardium occidentale) is a bushy, evergreen tree cultivated in tropical zones all over the

world. A pseudo-fruit (cashew apple) can be obtained from cashew cultivation and used in the food

industry; however, the principal and most valuable product from the cashew is its edible nut. Cashew nuts

are enclosed in a shell with an internal honeycomb structure which contains a phenolic liquid (cashew

nutshell liquid, CNSL) that is a severe skin irritant, but also a valuable product for various industrial

applications [1] that are attracting increasing interest.

1

Download English Version:

https://daneshyari.com/en/article/8071141

Download Persian Version:

https://daneshyari.com/article/8071141

<u>Daneshyari.com</u>