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a b s t r a c t

This paper examines the degree to which a large-scale datacenter employing lithium-ion (Li-ion) bat-
teries for demand response can learn the physics-based aging and degradation dynamics of the un-
derlying batteries by measuring their input/output current/voltage data. Battery degradation dynamics
are chemistry dependent and change significantly for newer chemistries. Moreover, characterizing these
degradation dynamics requires time-consuming and expensive laboratory testing. Together, these facts
motivate the following question: is it possible to use battery current and voltage measurements to learn
battery degradation behavior in a datacenter where numerous distributed batteries are being used for
demand response? If so, what are the benefits and challenges associated with such learning? The goal of
this paper is to provide preliminary answers to these questions building on earlier work by authors on
health-conscious stochastic battery control. Specifically, we show that when datacenters exploit its de-
mand management flexibility at the rack-level to control different batteries in accordance with different
management policies, the resulting data is sufficiently rich to the point where (1) the learning of
degradation behavior is possible within the span of approximately 1 year, (2) with a reasonable number
of cells, (3) even when the batteries are used simultaneously for degradation learning and demand
response.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper examines the challenge of using datacenters as a
cyber-physical resource for learning battery aging behavior when a
large number of batteries is employed for demand response. The
paper focuses on the development of a model-based technique for
the collective learning of degradation dynamics. A preliminary
study is performed to test the possibility of learning battery aging
behavior using measurement data obtained from a large number of
lithium-ion cells during demand response. The term demand
response refers to any process that changes consumer power and
energy demand based on electricity price [1]. In the context of a
datacenter, demand response generally refers to the process of
modifying the overall power demand profile to reduce amortized
capital and operating expenses. Cost of power is a significant factor
in datacenter operation and contributes around 30e40% of total

monthly operating expenses [2]. A significant portion of this large
power cost is a consequence of datacenter workload variations
resulting from many factors, for example, scheduled virus scans,
media services, and flash crowd visitor etc. [3]. The large power
peaks can create disturbance in the system. The occasional power
peaks increase the capital expenses since the datacenter power
infrastructure need to be provisioned for the peak power. Monthly
operating cost also increases since peak power draw is penalized as
a consequence of higher peak load on the grid. In the year 2013, US
datacenters overall used 91 billion kWh of electricity, at an esti-
mated cost of $6.7b. By the year 2020, this consumption is projected
to increase up to 140 billion kWh/year, which is equivalent to the
output of 50 coal-fired power plants [4]. Therefore, even a small
improvement in existing datacenter demand response policies will
cut the electricity cost and significantly reduce carbon emission by
lowering the peak load on the power grid. Power provisioning and
demand response in datacenters are highly similar to the operation
of microgrids in terms of distributed storage and fluctuating loads
[5]. Several works in the microgrid area focus on implementing
hybrid energy storage systems including fuel cells [6], Li-ion
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batteries and renewable generation [7] which are relevant to
datacenter power management. Transient stability [8] of power
systems and fault analysis [9,10] in microgrid also play important
role in power management using energy storage devices.

Due to high energy density and reduced deployment costs, Li-ion
battery storage is currently being considered for demand response
in datacenters [11,12]. When performing demand response with Li-
ion batteries, battery degradation behavior and lifetime play a sig-
nificant role in the overall savings.Moreover, thedeploymentof new
and more efficient battery chemistries might also improve the de-
mand response savings. These insights are explained further in later
sections. They act as primary motivations of this paper to study the
feasibility of using datacenter as a cyber-physical laboratory to learn
battery aging behavior in parallel to using them for demand
response. If Li-ion batteries are used as uninterruptible power
supply (UPS) systems in datacenters, the high capital cost of Li-ion
batteries can be compensated over time by their long calendar life
[13]. However, using Li-ion batteries for demand response requires
frequent charging and dischargingwhichwill impact battery health
in terms of power and energy capacity. If not optimized for health, a
demand response control policy might cause premature failure and
shorter end of life (EOL) of batteries and offset the economic benefit
of demand response. Recent work by Liu et al. shows that battery
aging-aware power management in a green datacenter can extend

battery life up to 69% [14]. Preliminary analysis by the authors also
show that battery health-conscious demand response policy can
reduce battery degradation significantly compared to a policy that is
not optimized for health (Fig. 2) [15]. In that analysis, the demand
response policy is to limit grid power draw within a certain range
called “power cap”. “Power cap” is defined as a percentage of the
difference between the maximum and minimum power compared
to an average power demanded by the datacenter. Fig.1 explains the
definition with the examples of 40% and 90% power cap given a
sample power demand. Smaller percentage value of power cap
means that lower peakpowerwill be drawn fromthegridwhichwill
result in higher savings. This definition of a power cap is used
throughout this paper and not necessarily congruent with the def-
initions adopted by the existing datacenter demand response liter-
ature. However, the intent is to use the power cap constraint for
different datacenter demand response policies as an indicator of
these policies aggressiveness.

Fig. 2.a demonstrates how battery health (solid-electrolyte
interphase (SEI) layer-based capacity fade) is affected by different
levels of aggressiveness of demand response policies (i,e,. power
cap). It shows that a health-conscious stochastic control policy for
demand response can reduce battery health degradation upto 88%
compared to a stochastic control policy that is not optimized for
health. Fig. 2.a also shows that a tight power cap (e.g., 40%) has a
smaller room for improvement in long-term battery aging. The
reason behind that is the requirement of deep charging and dis-
charging to shave large peaks and the necessity of maintaining a
high average state of charge (SOC) to allowsuchdeep cycling. Fig. 2.b
shows the combined capital expense (CapEx) andoperating expense
(OpEx) savings obtained from demand response with and without
optimizing for battery health. For both cases, the savings and health
degradation increase almost linearly with power cap. The slope of
the two fitted lines shows combined CapEx and OpEx savings per
unit capacity of the energy storage. When demand response is
performed in a health-conscious manner, the combined CapEx and
OpEx savings are $62/Ahr of installed Lithium-ion battery capacity.
The savings diminish to $29/Ahr when battery health is not opti-
mized during demand response. Therefore, health-conscious sto-
chastic control can increase the savings more than 100% compared
to a stochastic demand response policy that is not optimized for
health. Given the highest estimated market price of Li-ion energy
storage in 2015 ($600/kWh [16]), the nominal cell voltage (3.3 V),
and effective usable capacity (EOL at 20% capacity fade), the cost of
usable Li-ion cell capacity becomes $0.9/Ahr. Since this cost is much

Fig. 1. Power cap is defined as a limit on maximum and minimum power drawn from
the grid.

Fig. 2. Optimal (a) capacity fade per month and (b) dollar savings per month by implementing control policy obtained by solving Stochastic Dynamic Programming (SDP) problem
when different power caps are imposed on grid power.
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