Energy 155 (2018) 592-609

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Modelling smart energy systems in tropical regions

D.F. Dominković ^{a, *}, V. Dobravec ^b, Y. Jiang ^c, P.S. Nielsen ^d, G. Krajačić ^b

^a Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Frederiksborgvej 399, Roskilde, Denmark

^b Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia

^c Environmental Economics and Natural Resources Group, Wageningen University & Research, Hollandseweg 1, 6706, KN, Wageningen, The Netherlands

^d Department of Management Engineering, Technical University of Denmark (DTU), Produktionstorvet 426, Lyngby, Denmark

ARTICLE INFO

Article history: Received 1 January 2018 Received in revised form 23 March 2018 Accepted 1 May 2018 Available online 4 May 2018

Keywords: Air pollution Energy storage modelling District cooling Smart cities Smart energy system Tropical climate

ABSTRACT

A large majority of energy systems models of smart urban energy systems are modelling moderate climate with seasonal variations, such as the European ones. The climate in the tropical region is dominated by very high stable temperatures and high humidity and lacks the moderate climate's seasonality. Furthermore, the smart energy system models tend to focus on CO₂ emissions only and lack integrated air pollution modelling of other air pollutants. In this study, an integrated urban energy system for a tropical climate was modelled, including modelling the interactions between power, cooling, gas, mobility and water desalination sectors. Five different large scale storages were modelled, too. The developed linear optimization model further included endogenous decisions about the share of district versus individual cooling, implementation of energy efficiency solutions and implementation of demand response measures in buildings and industry. Six scenarios for the year 2030 were developed in order to present a stepwise increase in energy system integration in a transition to a smart urban energy system in Singapore. The economically best performing scenario had 48% lower socio-economic costs, 68% lower CO₂e emissions, 15% higher particulate matter emissions and 2% larger primary energy consumption compared to a business-as-usual case.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Climate change has become one of the most important topics in political discussions among nations and cities around the world in recent years. Energy production and consumption are responsible for two-thirds of the world's greenhouse gas (GHG) emissions, making the energy sector one of the main contributors to the manmade climate change [1]. In order to tackle that problem, 195 countries worldwide signed the Paris agreement in 2015 [2]. The countries committed themselves to increase its efforts to cut CO₂e emissions with the aim of keeping the projected growth in global average temperature below 2 °C. An important part of those efforts is changing local and national energy systems from using fossil fuels towards using renewable energy sources (RES). Coastal cities are especially vulnerable to the climate change due to the sea level rise potential, stronger storms and other unexpected weather events.

Cities will be among the major contributors in this transition process. Today, 54% of the world's population lives in cities and the United Nations forecasts that the share is expected to continuously grow, resulting in 66% of the world's population being urban in 2050 [3]. Cities are also facing the challenge of increasing energy consumption per capita, as urban energy use in the last 25 years has grown more than the urbanisation rate [4]. Cities can therefore easily become hotspots of air pollution, as they concentrate people, traffic, construction activity and energy use [5]. The World Health Organisation (WHO) states that more than 80% of the global urban population is exposed to air quality levels that are below WHO recommendations [6]. Particularly interesting in this context are cities in tropical climates. While heating demand accounts for a predominant part of the total energy consumption in moderate and cold climates, tropical climates are experiencing an ever growing cooling demand, as they are dominated by humid air and high temperatures throughout the year [7]. It is therefore important to analyse future energy systems in cities located in tropical climates, with a special emphasis on residential cooling.

Cooling systems have been the main focus in many research

^{*} Corresponding author.

E-mail addresses: dodo@dtu.dk (D.F. Dominković), viktorija.dobravec@fsb.hr (V. Dobravec), yu.jiang@wur.nl (Y. Jiang), pernn@dtu.dk (P.S. Nielsen), goran. krajacic@fsb.hr (G. Krajačić).

Nomenclature	
abs _{DC}	Cold production for district cooling (DC) from single
air poll	Costs of air pollution emissions \mathcal{L}/ka
air_poll _j air_poll _{inte}	n_j Air pollution intensity of a certain technology or
р	Discrete visible (0 or 1) used for modelling the shoirs
Ву	of the refurbishment scenario
hio can	Maximum allowed biomass consumption in the
Di0_Cup	machiled system MWb
chiller _{DC}	Production of cold in DC from centralized electric chillers MWh
COPDC	Coefficient of performance of chillers in DC
chiller _{indivi}	dual Production of cold from individual electric chillers, MWh
cool _{en,ef}	Reduced cooling energy demand due to the increased energy efficiency, MWh
cool _{demand,}	_{total} Total cooling demand, MWh
COP _{individua}	al Coefficient of performance of individual chillers
COP _{abs}	Coefficient of performance of absorbers
CO2_cap	Maximum amount of emissions allowed in the system, ton
CO2_inten	$_{i}$ CO ₂ intensity of a certain technology or energy
	within the system boundaries, ton/MWh
CO2 _{intenk}	CO ₂ intensity of a certain technology or energy
	coming in or out of the system boundaries, ton/MWh
$CO2_j$	Costs of CO ₂ emissions, \in /ton
DC _{demand}	DC demand, MWh
dis_rate _i	Discount rate of the technology <i>i</i> , %
el_dem	Electricity demand, MWh
ela	Elasticity of willingness to pay with respect to
	income
<i>ele</i> transport	Electricity demand for electrified part of the transport sector, MWh
fix_0&M _i	Fixed operating and maintenance costs of energy plants, €/MW
flex	Reduced electricity demand due to the load shifted in industry or buildings sector, MWh
flex _{ch}	Additional demand for electricity due to the shifted load demand, MWh
fuel _i	Fuel cost of specific energy type, €/MWh _{fuel}
gas_dem	Gas demand, MWh
gas_imp _k	Price of import or export of gas in a specific hour, €/MWh
gas _{synthesis}	Synthetic natural gas production from syngas using gas synthesis, MWh
geotherma	<i>I</i> _{DC} Cold production for DC from geothermal waste heat, MWh
heat_level _r	Heating energy content stored in the energy storage, MWh
heat_dem _t	Heat demand in district energy grid t, MWh
i	Energy technology index
ind_cool _{der}	_{nand} Individual cooling demand, MWh
inv _i	Total investment in technology i, \in
inv _{en,ef,y}	Investment cost of a certain building energy efficiency scenario, €
j	Energy technologies that consume fuels and have emissions
lev_inv _i	Levelized cost of investment over the energy plant lifetime, €/MW
lifetime _i	Lifetime of the technology <i>i</i> , years

<i>MEC</i> _{Sing}	Marginal external cost of air pollution in Singapore, €/ton	
MECHK	Marginal external cost in the United Kingdom, \in /ton	
methanol	Methanol production via synthesis from syngas, MWh	
petr_dem	Gasoline demand, MWh	
$petr_imp_k$	Price of import of gasoline in a specific hour, €/MWh	
RO	Fresh water production from sea water desalination	
	using reverse osmosis (RO), m ³	
SOEC	Hourly production of syngas from solid-oxide	
	electrolysers, MWh	
SOFC	Hourly production of electricity from solid-oxide fuel	
	cells, MWh	
t	Hour, h	
var_O&M _j	Variable operating and maintenance costs of energy plants, €/MWh	
water _{demand} Demand for fresh water production from sea		
	desalination via RO, m ³	
x_i	Capacity variables of energy plants and gas grid, MW	
x_j	Generation capacities of energy plants (8760	
	variables for each energy plant, representing the	
	generation in each hour during the one year), MWh	
$x_{j,EL}$	Hourly generation of technologies which generate	
	electricity, MWh	
x _{j,EL,biomass}	Houriy generation of technologies which generate	
	Electricity and are driven by biomass, wiven	
x _{j,EL,gas}	aloctricity and are driven by gas. MWb	
V.	Hourly generation of technologies which generate	
∧j,EL,other	electricity and are driven by other fuel types or are	
	not fuel-driven (Photovoltaics (PVs) and wind	
	turbines) MWh	
Xi hattaru sta	Hourly charge of vehicles battery storage. MWh	
x_i hattery storage dis Hourly discharge of electricity of vehicles		
J,Duttery,Sto	battery storage, MWh	
$x_{i hattery storage grid dis r}$ Hourly discharge of electricity of vehicles		
<i>J</i> , <i>batcty</i> , <i>sto</i>	battery storage to the power grid (vehicle-	
	to-grid (V2G)), MWh	
X _{i.gridbattery.S}	torage _{ch} Hourly charge of electricity grid battery storage,	
MWh		
<i>x</i> _{<i>j</i>,<i>grid_battery</i>,<i>storage_dis</i> Hourly discharge of electricity grid battery}		
storage, MWh		
$x_{j,heat,storage_ch,t}$ Hourly charge of heat to the heat storage		
	operated in the district cooling (DC) system <i>t</i> ,	
	MWh	
x _{j,heat,storag}	$_{ge_dis,t}$ Hourly discharge of heat from the heat storage	
N	Concretion of gas after $CO_{\rm removal in an acrohic}$	
x j,an_dig	digester MWb	
Y	· Heat generation needed for absorption chillers: from	
∧j,wasteheat	gas biomass waste CHPs solar thermal or waste	
	heat from data centres MWh	
X1.	Import or export across the system boundaries of	
··· _K	different types of energy (8760 variables per one type	
	of energy, representing the flow in each hour during	
	the one year), MWh	
у	Chosen refurbishment scenario (out of several	
-	predefined ones), integer value	
Y _{Sing}	Gross national income per capita at purchasing	
	power parity in Singapore, \$	
Y _{UK}	Gross national income per capita at purchasing	
	power parity in the United Kingdom, \$	
n.	Efficiency of technology, MWh _{energy} /MWh _{fuel}	

Download English Version:

https://daneshyari.com/en/article/8071537

Download Persian Version:

https://daneshyari.com/article/8071537

Daneshyari.com