Accepted Manuscript

Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system

Abla Khiareddine, Chokri Ben Salah, Djamila Rekioua, Mohamed Faouzi Mimouni

PII: S0360-5442(18)30680-7

DOI: 10.1016/j.energy.2018.04.073

Reference: EGY 12712

To appear in: Energy

Received Date: 06 September 2017

Revised Date: 17 February 2018

Accepted Date: 13 April 2018

Please cite this article as: Abla Khiareddine, Chokri Ben Salah, Djamila Rekioua, Mohamed Faouzi Mimouni, Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system, *Energy* (2018), doi: 10.1016/j.energy.2018.04.073

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Sizing methodology for hybrid photovoltaic /wind/

hydrogen/battery integrated to energy management strategy for pumping system

Abla Khiareddine^{a,*}, Chokri Ben Salah^b, Djamila Rekioua^c and Mohamed Faouzi Mimouni^a

^aResearch Unit on Study of Industrial Systems and Renewable Energy (ESIER), University of Monastir, Department of Electrical Engineering, National School of Engineers of Monastir, Avenue Ibn EL JAZZAR, 5019 Monastir, Tunisia.

^bDepartment of Electrical Engineering, Control and Energy Management Lab., (CEMLab), University of Sfax, National School of Engineers of Sfax, BP. W, 3038, Sfax, Tunisia.

^cLaboratoire LTII, Faculte de Technologie, Universite de Bejaia, 06000, Algeria.

*Corresponding author: E-mail: khiareddine_abla@yahoo.fr

Abstract

The real penetration of renewable energy sources under random variability and unpredictability of weather conditions requires an optimal sizing of hybrid renewable power generation systems. This paper presents a techno-economic optimization model, to perform the optimal sizing of a stand-alone hybrid photovoltaic/wind/hydrogen/battery system. Optimum sizing has been applied to a system consisting of an induction motor coupled to a centrifugal pump, located at Sahline-Tunisia. The optimal-cost design and the new suitable power management approach are the two main objectives. The optimal sizing is assessed on the basis of technical (the Deficiency of Power Supply Probability, the Relative Excess Power Generated) and economic (the Energy Cost as well as the Total Net Present Cost) criteria. The power management strategy optimizes how the spare energy is used. The results highlight the important role of the hybridization of renewable energy sources, photovoltaic and wind turbine, in reducing the cost of the system. It is also noted that the hydrogen chain prolongs the life of the battery, preventing the massive use of the latter. The optimized sizing algorithm gives all the possible configurations of the hybrid system not only for a pumping system but also for any autonomous load located all over the world.

Keywords: Hybrid photovoltaic/wind pumping system; Battery; Fuel cell/electrolyzer storage system;

31 Optimal sizing; Eenergy management.

1. Introduction

Download English Version:

https://daneshyari.com/en/article/8071602

Download Persian Version:

https://daneshyari.com/article/8071602

<u>Daneshyari.com</u>