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a b s t r a c t

For district heating systems, prediction of the heat load is a very important topic for energy storage and
optimized operation. For large and complex heating systems, most prediction models in previous pub-
lications only considered the influence of outdoor temperature, whereas the indoor temperature and
thermal inertia of buildings were not included. For an energy-efficient residential building in Shi-
jiazhuang (China), the heat load prediction is investigated using various prediction models, including a
wavelet neural network (WNN), extreme learning machine (ELM), support vector machine (SVM) and
back propagation neural network optimized by a genetic algorithm (GA-BP). In these models, the indoor
temperature and historical loads are considered as influencing factors. It is found that the prediction
accuracies of the ELM and GA-BP are slightly higher than that of WNN, so the ELM and GA-BP models
provide feasible methods for the heat load prediction. The SVM shows smaller relative errors in the
model prediction compared with three neural network algorithms.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the building energy consumption has a rapid
growth. According to the statistics as shown in Ref. [1], this energy
consumption accounts for around 20e40% of the total number in
advanced countries. He et al. [2] indicated that the share of the
heating energy consumption in northern China is above 20%. Pre-
diction of the heat load is the foundation for operating manage-
ment of many buildings. The heat load prediction includes short-
term (from seconds to hours), medium-term (from days to
months) and long-term forecasting (from months to quarters or
even years), and is affected by the buildings physical properties,
outdoor temperature, indoor temperature and household behavior
[3]. Recently, most of the heat load forecasting models are of the
short-term forecast type [4]. Massana et al. [5] used an autore-
gressive model (AR) to predict the short-term heat load for non-
residential buildings. In this model, influence of the historical
load was only investigated without considering climate parame-
ters. Proti�c et al. [6] showed forecasting models which used the

support vector regression with a polynomial (SVR-POLY) and the
support vector regression with a radial basis function (SVR-RBF) to
predict the heat load for a heating substation in Serbia. The two
models included outdoor temperature, primary supply tempera-
ture, primary return temperature and instantaneous flow on the
primary side, but without considering the indoor temperature.
Powell et al. [7] predicted the heat load for the main campus at the
University of Texas (1.6 million m2) for the next 24 h using a non-
linear autoregressive external input model (NARX) of time series.
They showed that the mean absolute percentage error (MAPE) of
this prediction model was 9.8%. Al-Shammari et al. [8] forecasted
the heat load for a district heating system in Novi Sad for the next
10 h using the support vector machine with the firefly algorithm
(SVM-FFA). The results indicated that the method was only suitable
for a short-term prediction. Fang et al. [9] predicted the heat load
for the city Espoo in Finland for 168 h using a mixed model, which
was based on a combination of a multiple linear regression analysis
model (MLRM) and a seasonal autoregressive differential moving
average model (SARIMA). However, the effect of the indoor tem-
perature was not considered in this mixed model. Idowu et al. [10]
predicted a short-term (24 h) heat load for five residential buildings
and five commercial buildings by using support vector machine
(SVM), feed-forward neural network (FFN), multiple linear regres-
sion (MLR) and regression tree algorithm (RT). The results proved
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that the SVM was the optimal method for heat load prediction.
Proti�c et al. [11] forecasted the heat load for heat supply units in the
city Novi Sad by comparing the accuracies of support vector ma-
chine with discrete wavelet transform algorithm (SVM-WAVELET),
extreme learning machine (ELM), artificial neural network (ANN)
and genetic programming algorithm (GP). They found that the
SVM-WAVELET had the highest computational precision. Sajjadi
et al. [12] compared the extreme learning machine (ELM) with
genetic programming (GP) and artificial neural network (ANN)
models to predict the heat load for a district heating system. The
results showed that the accuracy and generalization ability of ELM
was superior to GP and ANN. Without consideration of the influ-
ence of the outdoor temperature, Shamshirband et al. [13] found
that prediction errors gradually increased with the time step when
the adaptive neuro-fuzzy inferences system (ANFIS) was used.
Sholahudin S [14] presented a dynamic neural network method to
forecast the heat load for a typical 9-story apartment building in
Seoul, and the research results showed that the outdoor tempera-
ture and wind speed were the greatest influencing factors on the
instantaneous heat load. Chou et al. [15] used ANN, SVM, classifi-
cation and regression tree algorithm (CART), chi-square automatic
verification algorithm (CHAID) and general linear regression (GLR)
to predict the energy consumption of a building. The SVM method
was proved to be the best method and the MAPE of this model was
1.13%. Zhang et al. [16] predicted the heat load for a heat source in
the Hebei province, China. The study indicated that cross validation
and automatic parameter optimization based on the SVR method
can improve the prediction accuracy. Cheng et al. [17] predicted the
cooling load of a building for the next 24 h using the deep learning
algorithm. However, the used two-week data set was not large
enough to ensure reliable training of this prediction model. Dahl
et al. [18] predicted the heat load for a district heating system in
Aarhus using various ensemble weather factors, including outdoor
temperature, wind speed and solar radiation, but without indoor
temperature. For a non-energy-efficient building, the heat load
changes significantly with instantaneous outdoor temperature due
to the poor thermal insulation. However, for an energy-efficient
building, the heat load mainly fluctuates due to the outdoor
daily-averaged temperature [19].

Above all, many studies focused on discussions of short-term
(below 48 h) prediction models, but there was only few data
available to predict a medium-term (a week) heat load. Most of the
prediction models only considered effects of climate factors,

whereas the indoor temperature and the thermal inertia of the
buildings were ignored. In addition, the climate condition, espe-
cially the outdoor temperature, is one of themost significant factors
that affect the heat load [20,21].

Without taking into account the indoor temperatures as in most
existing models, the predicted data will give an inaccurate predic-
tion. Therefore, the aim of this research is to investigate effects of
the indoor temperature of the heating system, and thereby provide
a more accurate prediction method. In addition, combined with the
weather forecast and the setting indoor temperature, comparisons
of WNN, ELM, GA-BP and SVM are conducted to predict the heat
demand of buildings.

2. Measurement system

2.1. A wireless on-off control system

A wireless on-off control system was developed to adjust the
indoor temperature as shown in Fig. 1. A calorimeter was installed
at the entrance of a chosen building to measure the total heat
consumption of the building. The wireless indoor temperature
controller and on-off valves were installed for each household. The
indoor temperature controller can adjust the room temperature
and collect temperature information of each household. The
description of this operating process is as follows: firstly, after the
indoor temperature is set by the user through the temperature
controller, awireless signal is sent to thewireless on-off valve. Then
the real indoor temperature is detected by the valve. All the con-
trollers are comparing the set and the real values. If the real value is
different from the set value, the valve will open or close.

The calculation formula of the heat metering system is
described as [22]:

Qj ¼
tjFjPm

j¼1
tjFj

Q (1)

where Qj is the heat allocated for the household j; tj is the accu-
mulative proportion of open time of the valve for household j; Fj is
the heating area of household j; Q is the heat consumption of the
building, and m is the number of rooms. According to Equation (1),
the heat consumption of the building is shared with all the
households by considering effects of the heating areas and

Nomenclature

a scaling factor
b translation factor of wavelet basis function
F area (m2)
G instantaneous water flow of the entrance (m3/h)
h output values of the hidden layer
l number of hidden layer nodes
m number of rooms
Q heat consumption (kWh)
T temperature (K)
X input parameter
Y output parameter
z number of output layer nodes

Greek symbols
u weight of the wavelet neural network
t accumulative proportion

Superscript
H the Hth order
M the Mth order
N the Nth order
Z the Zth order

Subscripts
d daily-averaged
h hourly-averaged
i instantaneous
j the jth order
in indoor
out outdoor
p prediction
r return
s supply
t transient
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