Accepted Manuscript

A novel energy harvesting device for ultralow frequency excitation

Feng Wang, Xiuting Sun, Jian Xu

PII: S0360-5442(18)30409-2

DOI: 10.1016/j.energy.2018.03.011

Reference: EGY 12469

To appear in: Energy

Received Date: 18 September 2017

Revised Date: 01 March 2018

Accepted Date: 02 March 2018

Please cite this article as: Feng Wang, Xiuting Sun, Jian Xu, A novel energy harvesting device for ultralow frequency excitation, *Energy* (2018), doi: 10.1016/j.energy.2018.03.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A novel energy harvesting device for ultralow frequency excitation

Feng Wang¹, Xiuting Sun^{1, 2,*}, Jian Xu^{1, 3}

1 School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, PRC

2 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093,

PRC

3 Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, PRC

Abstract

In recent decades, energy harvesting from external vibration with ultralow frequency has been investigated intensively. A novel energy harvesting device with adjustable nonlinearity for ultralow frequency excitation is proposed and analyzed in this study. The energy harvesting device is made of a mass attached to the base by Elastic Steel Slices (ESSs) and a pair of Quadrilateral-Linkage Structures (QLSs). With the mathematical model, theoretical studies are carried out. The analysis shows that the device is capable for ultralow-frequency vibration energy harvesting since it has adjustable resonance frequency band. With the appearance of the adjustable nonlinearity, the system has a wide band for resonance by the utilization of multi-steady states. Experimental prototypes are assembled and tested. The experimental results show that the beginning frequency of effective energy harvesting can be reduced by over 50% by assembling the QLSs to adjust the stiffness property of the system. In addition, although the stiffness of the device is expressed by nonlinear irrational function, we find that the output voltages generated are large, smooth and stable. The results of this study illustrate that the proposed device is a feasible design for collecting energy from ultralow frequency

-

E-mail address: sunxiuting@usst.edu.cn (X. Sun).

^{*} Corresponding author.

Download English Version:

https://daneshyari.com/en/article/8071749

Download Persian Version:

https://daneshyari.com/article/8071749

<u>Daneshyari.com</u>