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a b s t r a c t

Unique effective material properties are not possible for random heterogeneous materials at inter-
mediate length scales, which is to say at some mesoscale above the microscale yet prior to the attainment
of the representative volume element (RVE). Focusing on elastic moduli in particular, a micromechanical
analysis based on the Hill–Mandel condition leads to the conclusion that two fields, stiffness and
compliance, are required to bound the response of the material. In particular, we analyze means and
correlation coefficients of a random planar material with a two-phase microstructure of random
checkerboard type. We employ micromechanics, which can be viewed as an upscaling, smoothing
procedure using the concept of a mesoscale “window”, and random field theory to compute the
correlation structure of 4th-rank tensor fields of stiffness and compliance for a given mesoscale. Results
are presented for various correlation distances, volume fractions, and contrasts in stiffness between
phases. The main contribution of this research is to provide the data for developing analytical correlation
functions, which can then be used at any mesoscale to generate micromechanically based inputs into
analytical and computational mechanics models.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The assumption of constitutive relations is central to the theory
and application of continuum mechanics. Within the linear elastic
theory for solid materials, the generalized version of Hooke's law
utilizes tensors of elastic moduli to establish the appropriate
relationship between stress and strain. Boundary value problems
on a scale of, say, 1 m can be solved, even in the presence of
material spatial fluctuations, because of material tensor-valued
moduli linking stresses and strains. If this is done by, say, a finite
element (FE) method with each element of size, say, 2 mm, the key
challenge is to describe those fluctuations in a manner consistent
with micromechanics. That is, the upscaling from the underlying
random microstructure—i.e., the homogenization on the scale of
2 mm—has to be done right. If one is interested in elastic modulus
on a scale of 4 mm, however, the stiffness tensor random field (RF)
will be different (it will, at the very least, exhibit weaker fluctua-
tions), and this again has to be done right.

In general, there is no “separation of length scales” between the
microscale and the macroscale, and we must consider the mesoscale,
be it 2 mm or 4 mm in our example above. In other words, the

stiffness field is scale dependent. With this challenge in mind, we
follow the methodology developed earlier for characterization of
mesoscale thermal conductivity tensor fields in planar random
media (mathematically equivalent to stiffness field in anti-plane
elasticity of media having the same random geometries) [1–3] to
assess the in-plane stiffness tensor RF. Once this is done, fields like
these, based on the microstructure of a specific material, should
inform analytical models of stiffness tensor fields, such as based on
the maximum entropy approach [4–9], so as to form input into
stochastic continuum models (e.g., wavefronts in random media)
or be incorporated into computer codes in order to generate
microstructurally based stiffness matrices in stochastic finite
element (SFE) methods.

The geometries of underlying material microstructures studied
here are those of a planar Bernoulli lattice process at various
values of probability p, where p is the event at the lattice site.
The event signifies a stiff phase relative to a matrix phase. The
nominal volume fraction of the stiff phase is directly given by p.
We restrict our scope to a random two-phase composite material
in the setting of in-plane linear (hyper-)elasticity, specifically,
assumed to be in a state of plane strain. We covered a wide range
of contrasts (mismatches between the phases) in the material: up
to 1000.

To perform upscaling, RFs on coarser length scales (mesoscales)
are specified by their one-point and two-point statistics. However,
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starting from the assumption that spatial correlations of these
fields are neither intuitive nor derivable through analytical meth-
ods, we employ a Monte Carlo approach—that is, repeated sam-
pling of a random material—to estimate these statistics and reveal
the general structure of the fields. The technique adheres to the
Hill–Mandel condition of micromechanics so as to ensure that the
upscaling ensures agreement between theory and experiment.
While the individual phases on the microscale are isotropic, the
mesoscale domains exhibit anisotropy with probability one. Also,
since the mesoscale windows are statistical volume elements of
tensor-valued RFs of stiffness, all the components of the in-plane
stiffness tensor have to be assessed and, likewise, all their auto-
and cross-correlations.

While the Bernoulli lattice process offers a very simple random
medium model, we ask whether the conclusions concerning the
upscaling of even this microstructural model are obvious or not.
If not, this study should provide guidance as to what may be
expected in richer models. In brief, the contents of this paper are
as follows: (i) background introduction of a random material
model and upscaling; (ii) mesoscale RFs of stiffness and compli-
ance for in-plane linear elasticity: basic concepts and computa-
tional methods used to determine spatial correlation structures,
followed by extensive numerical results; (iii) conclusions.

2. Background

2.1. Random material

We consider for a random microstructure model the well-
known Bernoulli lattice process in plane, with each lattice node
being occupied by either one of the two phases. To make things
clear, consider a Cartesian lattice of spacing a in R2, that is

La ¼ fx¼ ðma;maÞg; ð1Þ
where m is an integer. We recall that a Bernoulli lattice process
Φp;a on La is a random subset of the lattice where each point of La
is contained in Φp;a with probability p independent of all the other
points. If the random variable Φp;aðAÞ is the number of points in A,
then it is binomially distributed with parameters pand n (the
number of lattice points that belong to A). If A1;A2;…;Ak are
pairwise disjoints, then Φp;aðA1Þ;Φp;aðA2Þ;…;Φp;aðAkÞ are indepen-
dent and

PfΦp;aðAÞ ¼ kg ¼ n
k

� �
pkð1�pÞn�k; k¼ 0;1;2;…;n: ð2Þ

The simulation of a Bernoulli lattice process proceeds along simple
lines: for each point xALa, generate a random variable zk,
uniformly distributed in ½0;1�, and accept this point if zkop. Then,
Φp;a is the union of all such points; five examples for different p's
are shown in Fig. 1. Note that p directly plays the role of the
nominal volume fraction, which we denote vðsÞf , where s stands for
the stiff phase as opposed to c for the compliant phase. The cases

of p¼0.41 and 0.59 correspond to site percolations on planar
lattices, but, since the response of a soft matrix with stiff inclu-
sions cannot be mapped into that of a stiff matrix with soft
inclusions on finite scales [3], both systems have to be considered
separately.

A note on notation: we use A;B;… to denote a tensor symbo-
lically, and Ai;Bij;… for a subscript notation of tensors of 1st-rank,
2nd-rank, and so on…; a comma is used to indicate partial
differentiation.

In effect, we have the random material B¼ fBðωÞ;ωAΩg
given as a random checkerboard where each BðωÞ is one realiza-
tion whose mechanics is deterministic. Each realization of the
random checkerboard BðωÞ is assumed to be piecewise constant,
consisting entirely of perfectly bonded, isotropic phases.

Fig. 1. Realizations of the binomial point process (random checkerboard) at five different p's. (a) 10%, (b) 25%, (c) 41%, (d) 50% and (e) 59%.

Fig. 2. The setup of random fields: from a piecewise-constant realization of a
composite to two approximating continua at a finite mesoscale. Here the super-
script d stands for essential (i.e., displacement d), while n for natural (i.e., traction t)
boundary conditions.
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Fig. 3. Mesoscale window (red frame) being shifted in both x1 and x2 within a
given range (blue frame) on a single realization of the random checkerboard
microstructure. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)
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