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a b s t r a c t

A novel method, referred to as the stochastic reduced order model (SROM) method, is proposed for
finding statistics of the state of linear dynamic systems with random properties subjected to random
noise. The method is conceptually simple, accurate, computationally efficient, and non-intrusive in the
sense that it uses existing solvers for deterministic differential equations to find state properties.

Bounds are developed on the discrepancy between the exact and the SROM solutions under some
assumptions on system properties. The bounds show that the SROM solutions converge to the exact
solutions as the SROM representation of the vector of random system parameters is refined. Numerical
examples are presented to illustrate the implementation of the SROM method and demonstrate its
accuracy and efficiency.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Monte Carlo simulation is the only general method for estimating
state statistics for linear/nonlinear dynamic systems with uncertain
properties subjected to random noise. Computational time, which is
usual excessive when dealing with realistic systems, limits the
usefulness of the method. Alternative methods have been proposed
for solving this class of randomvibration problems approximately, for
example, conditional analysis, stochastic Galerkin and collocation,
state augmentation, and Taylor, perturbation, and Neumann series.
An extensive review of features and limitations of these methods can
be found in [6, Sections 7.3–7.5]. Under some assumptions on system
properties and their uncertain parameters, these methods have been
used successfully in applications [4,5,10,12,13,15,18].

The proposed SROM method provides an additional tool for
calculating approximately state statistics for dynamic systems
with uncertain properties subjected to random noise. The method
can be used to solve both linear and nonlinear systems, but this
study deals only with linear systems. Let Z be an Rq�valued
random variable characterizing the uncertain properties of a
dynamic system and let X(t) be an Rd�valued stochastic process
denoting the system state. Properties of the conditional process
XðtÞjZ can be obtained by methods of linear random vibration. This
observation can be used to construct approximations for statistics
of the unconditional state X(t).

Let eZ be a SROM for Z, that is, an Rq�valued randomvariable with
a finite number of samples fezkg of probabilities fpkg, k¼1,…,m,
that are selected from the samples of Z such that eZ and Z have

similar properties. The proposed SROM method uses properties of
the conditional processes fXðtÞjZ ¼ ezkg to construct surrogate modelseX ðtÞ for X(t). The performance of the SROM method is assessed
by bounds on the discrepancy XðtÞ� eX ðtÞ between exact and SROM
solutions. It is shown that the SROM solution eX ðtÞ is (1) guaranteed to
converge to X(t) as the SROM representation of Z is refined,
(2) computational efficient since it requires a limited exploration of
the range of Z that is guided by SROMs eZ of Z, and (3) non-intrusive
since its implementation uses existing solvers for deterministic
differential equations.

Two numerical examples are used to illustrate the method
implementation and demonstrate its accuracy. The first is a half
oscillator subjected to Gaussian white noise whose properties are
modeled by a real-valued random variable Z. The second is a three
degree of freedom system subjected to a first order stationary
Gaussian process with exponential correlation function. The
Monte Carlo and the SROM methods are used to estimate the
probability that a vector system response leaves a safe set during a
time interval, referred to as failure probability. The performance of
the SROM method is remarkable in both example even when
based in SROMs eZ with only m¼5 samples.

2. Problem statement

Suppose X(t) is the solution of the linear differential equation

_X ðtÞ ¼ aðt; ZÞXðtÞþYðtÞ; tZt0; ð1Þ
where aðt; ZÞ is an (d,d)-matrix that depends on time and the
q-dimensional random vector Z of uncertain system parameters
and Y(t) is an Rd�valued stochastic process defining the input. It is
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assumed that (1) Z and Y(t) are independent random elements that
may be defined on distinct probability spaces ðΩ;F ; PÞ and
ðΩ′;F ′; P′Þ, (2) the probability laws of Z and Y(t) are known, and
(3) the initial state Xðt0Þ, if random, is independent of Z and Y(t).
As previously stated, conditional on Z, Eq. (1) defines a classical
linear random vibration problem. The unconditional state X(t) is
a stochastic process defined on the product probability space
ðΩ�Ω′;F � F ′; P � P′Þ. To emphasize the dependence of the
system state on Z and initial time t0, the system state X(t) will
be denoted at times by Xðt; t0; ZÞ.

The solution of Eq. (1) can be given in the form

Xðt; t0; ZÞ ¼φðt; t0; ZÞXðt0Þþ
Z t

t0
φðt; s; ZÞYðsÞ ds; tZt0; ð2Þ

where the (d,d)-transition matrix φð�; t0; ZÞ is the solution of

_φðt; t0; ZÞ ¼ aðt; ZÞφðt; t0; ZÞ; tZt0; ð3Þ
with φðt0; t0; ZÞ ¼ Id, where Id is the (d,d)-identity matrix and
the dot denotes differentiation with respect to time [2, Sections
3 and 4].

Methods are available for finding properties of Xðt; t0; ZÞ con-
ditional on Z. If Y(t) has finite variance, the first two moments
of Xðt; t0; ZÞjZ satisfy ordinary differential equations available in
the linear random vibration literature [3,14]. If Y(t) is a
Gaussian process, the first two moments of Xðt; t0; ZÞjZ define
completely the distribution of this conditional process. Otherwise,
methods of stochastic differential equation need to be used for
solution. If Y(t) is a polynomial in linear diffusion processes, Itô's
formula can be applied to develop differential equations for
moments of any order of Xðt; t0; ZÞjZ [6, Section 7.2.2]. If Y(t) does
not have finite variance, partial differential equations can be
developed for the characteristic function of Xðt; t0; ZÞjZ based
on properties of diffusion processes and stochastic integrals
[6, Section 7.2.3].

Suppose properties of the conditional process Xðt; t0; ZÞjZ have
been obtained. Unconditional state statistics can be calculated
by, for example, Monte Carlo simulation from properties of
fXðt; t0; ZÞjZ ¼ zig, where fzig, i¼1,…,n, are independent samples
of Z. If Y(t) has finite variance, the conditional mean and covar-
iance functions μðt; ZÞ ¼ E½Xðt; t0; ZÞjZ� and rðs; t; ZÞ ¼ E½Xðs; t0; ZÞ
Xðt; t0; ZÞjZ� exist so that the corresponding functions for the
unconditional state can be estimated by

bμðtÞ ¼ 1
n

∑
n

i ¼ 1
μðt; ziÞ and brðs; tÞ ¼ 1

n
∑
n

i ¼ 1
rðs; t; ziÞ: ð4Þ

3. SROM method

The implementation of the SROM method involves three steps.
First, a SROM eZ is developed for Z, that is, a random vector that
approximates Z in some sense and has a finite number of samples
fezkg, k¼1,…,m, selected from the samples of Z. Second, properties
of conditional state processes feXkðt; t0Þ ¼ Xðt; t0; ZÞjZ ¼ ezkg and their
gradients f∇eXkðt; t0Þ ¼ ð∂Xðt; t0; ZÞ=∂Z1;…; ∂Xðt; t0; ZÞ=∂ZqÞjZ ¼ ezkg
are calculated. Third, the processes feXkðt; t0Þg and f∇eXkðt; t0Þg are
used to construct an approximation eX ðt; t0; ZÞ for the unconditional
state vector Xðt; t0; ZÞ, that constitutes a surrogate model for the
system state.

The SROM method is closely related to Monte Carlo simulation,
and can be viewed as a smart Monte Carlo simulation. Like Monte
Carlo simulation, the SROM method uses properties of the condi-
tional state Xðt; t0; ZÞjZ corresponding to samples of Z. In contrast
to Monte Carlo that uses a large number of equally likely samples
of Z selected at random, the SROM method uses a few samples of
Z that are selected in an optimal manner, that is, the samples
of SROMs eZ for Z. Moreover, the SROM-based surrogate model

eX ðt; t0; ZÞ also accounts for the local variation of the system state
with Z in the vicinities of the samples feZkg of eZ .
3.1. SROMs for random vectors

Details on the construction and properties of SROMs can be
found in [9,11,17]. This section outlines briefly the essentials of
SROMs for the special case in which Z is a real-valued random
variable ðq¼ 1Þ. Let fezkg, k¼1,…,m, be a set of size m selected from
samples of Z. Denote by fΓkg the cells of a Voronoi tessellation
constructed in the range Γ ¼ ZðΩÞ of Z with centers fezkg, that is,
Γk ¼ fzAΓ : Jz�ezk Jo Jz�ezl J ; lakg. If zAΓ such that Jz�ezk J ¼
Jz�ezl J , lak, then z can be allocated to either Γk or Γl. The
Voronoi cells fΓkg are intervals for q¼1.

The probability law of a SROM eZ of Z is completely defined by its
samples fezkg and their probabilities fpk ¼ PðZAΓkÞg. For example,

moments of order r and the distribution of eZ are eμðrÞ ¼ E½eZr � ¼
∑m

k ¼ 1pkezrk and eF ðzÞ ¼∑m
k ¼ 1pk1ðzZezkÞ, respectively. Our objective is

to identify the pairs ðezk;ΓkÞ, k¼1,…,m, that minimize the discrepancy

between properties of eZ and Z for a selected model size m. This
discrepancy can be measured by objective functions of the type

∑r
r ¼ 1wrðeμðrÞ�μðrÞÞ2þ R ðeF ðzÞ� FðzÞÞ2βðzÞ dz, where wr ;βð�Þ40 are

weighting coefficients, rZ1 is an arbitrary integer, μðrÞ ¼ E½Zr �, and
FðzÞ ¼ PðZrzÞ. Algorithms have been developed for constructing
SROMs that are optimal in the sense that their defining parameters
ðezk;ΓkÞ, k¼1,…,m, are such that a prescribed objective function is
minimized [17].

3.2. Proposed SROM solution

Let eZ be a SROM for Z with samples fezkg of probabilities fpkg
corresponding to Voronoi cells fΓkg, k¼1,…,m, partitioning the
range Γ ¼ ZðΩÞ of Z. A SROM withm samples is said to have size m.
As previously, feXkðt; t0Þg and f∇eXkðt; t0Þg are the conditional states
fXðt; t0; ZÞjZ ¼ ezkg and gradients fð∂Xðt; t0; ZÞ=∂Z1;…; ∂Xðt; t0; ZÞ=∂ZqÞ
jZ ¼ ezkg, k¼1,…,m. The SROM solution eX ðt; t0; ZÞ has the expression

eX ðt; t0; ZÞ ¼ ∑
m

k ¼ 1
1ðZAΓkÞ½eXkðt; t0Þþ∇eXkðt; t0Þ � ðZ�ezkÞ�; tZt0; ð5Þ

so that its implementation requires knowledge of feXkðt; t0Þg and
f∇eXkðt; t0Þg, that is, system states and sensitivity factors condi-
tional on m values of Z, the samples of eZ . As previously stated,eX ðt; t0; ZÞ is viewed as a surrogate model for the unconditional
system state Xðt; t0; ZÞ.

We conclude this section with three comments on SROM
solutions. First, Xðt; t0; ZÞ constitutes a response surface on the
range Γ of Z for any time t and sample of Y(t). The SROM solutioneX ðt; t0; ZÞ in Eq. (5) is a piecewise linear approximation of this
response surface consisting of hyperplanes tangent to it at the
centers fezkg of the Voronoi cells fΓkg. Second, the distribution of Z
guides the construction of the partition fΓkg of Γ, in construct to,
for example, the stochastic collocation method that interpolates in
Γ with respect to points whose selection is independent on the
distribution of Z [6, Section 7.4.8]. Third, the generation of samples
of eX ðt; t0; ZÞ involves elementary calculations and is efficient.
It does not require to construct the Voronoi tessellation fΓkg;
a sample zi of Z is allocated to a particular Voronoi cell based on its
distances Jzi�ezk J to the centers of these cells.

4. Accuracy of SROM method

Consider the model in Eq. (5) with m¼1, that is, the modeleX ðt; t0; ZÞ ¼ eX ðt; t0Þþ∇eX ðt; t0Þ � ðZ�ezÞ; tZt0; ð6Þ
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