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a b s t r a c t

A two-step method is proposed to find state properties for linear dynamic systems driven by Gaussian
noise with uncertain parameters modeled as a random vector with known probability distribution. First,
equations of linear random vibration are used to find the probability law of the state of a system with
uncertain parameters conditional on this vector. Second, stochastic reduced order models (SROMs) are
employed to calculate properties of the unconditional system state. Bayesian methods are applied to
extend the proposed approach to the case when the probability law of the random vector is not available.
Various examples are provided to demonstrate the usefulness of the method, including the random
vibration response of a spacecraft with uncertain damping model.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a linear dynamic system with uncertain properties
that can be described by a random vector, and suppose the system
is driven by Gaussian noise. This scenario is consistent with, for
example, linear random vibration analysis of systems with uncer-
tain constitutive properties, also referred to as “disordered struc-
tures.” [1, Chapter 9]. In addition to Monte Carlo simulation, there
are two methods for determining the probability law of the system
state, provided the distribution of the random vector characteriz-
ing the uncertain system properties is known. One approach is to
augment the system state vector with new states corresponding to
the uncertain parameters. The added states are time invariant,
so that their time derivatives are zero, and the entire augmented
state vector satisfies a nonlinear system of equations driven by
Gaussian noise [2, Section 9.2.4]. Monte Carlo simulation is the
only general method for solving this class of stochastic equations,
that is, nonlinear random vibration problems. However, the Monte
Carlo approach is inefficient when dealing with large dimensional
systems, that is, systems commonly encountered in applications.

The second method, referred to as conditional analysis, exploits
the fact that the state vector of a linear system with uncertain
parameters driven by Gaussian noise is a Gaussian process for
specified values of these parameters. Properties of the uncondi-
tional state vector can be obtained from those of its conditional
properties by, for example, Monte Carlo simulation [3,4]. This
approach is conceptually simple, but is impractical when dealing
with complex systems that depend on a large number of uncertain
parameters.

This study proposes an alternative method for calculating state
properties for linear dynamic systems with uncertain parameters
driven by Gaussian noise. The proposed approach utilizes stochas-
tic reduced order models (SROMs) [5,6], rather than traditional
Monte Carlo simulation, to calculate properties of the system state
vector from its conditional statistics. The computational advantage
of the method relative to Monte Carlo simulation is significant
because it involves a limited exploration of the space of uncertain
parameters. The proposed method is straightforward when the
probability law of the random vector modeling all uncertain
variables is known. However, a modification of the method is also
developed herein to consider the more interesting case where the
probability law of uncertain parameters is unknown.

The outline of the paper is as follows. In Section 2, we review
the second-moment properties of deterministic linear dynamic
systems driven by random noise, discuss briefly the construction
of SROMs, and illustrate by example the implementation of the
proposed method for finding state properties for linear systems
with uncertain properties in a Gaussian environment. To illustrate
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the proposed method on a problem of engineering interest, we
also consider the random vibration response of a spacecraft during
atmospheric re-entry, where the parameters describing the damp-
ing of the structure are uncertain. In this section it is assumed that
the probability law of the uncertain parameters is known. In
Section 3, it is assumed that the probability law of the uncertain
parameters is not known. Two cases are examined. First, it is
assumed that the uncertain parameters can be measured. Second,
it is assumed that the system parameters are not observable
directly. Estimates are constructed for the distribution of the
uncertain system parameters within a Bayesian framework. Once
these estimates are obtained, the method outlined in the previous
section can be used to find unconditional state properties. Numerous
examples are used to illustrate the proposed method.

2. Linear systems with uncertain parameters

Let XðtÞ be a Rd�valued stochastic process denoting the state of
a linear system that depends on a finite number of uncertain
properties and is subjected to Gaussian noise. The uncertain
parameters of the system are collected in a q-dimensional random
vector Θ. The conditional state XðtÞjΘ is a Gaussian process, so
that the probability law of this process is completely specified by
its mean and covariance functions. The first two moments of
XðtÞjΘ satisfy ordinary differential equations for specified values of
Θ that, generally, need to be solved numerically. Analytical
solutions for the second moment properties of XðtÞjΘ are available
in special cases of limited practical interest.

Our objective is to develop an efficient and accurate method for
calculating properties of the unconditional system state XðtÞ and of
functionals of this process. The method involves two steps. First,
the second moment properties of the conditional state XðtÞjΘ are
calculated, so that the law of the Gaussian process XðtÞjΘ is
completely defined. Second, properties of functionals of XðtÞ are
derived from the probability law of XðtÞjΘ and the distribution
of Θ. We assume in this section that the distribution of Θ is known.

Example 1. Let X(t), tZ0, be the solution of the stochastic
differential equation

dXðtÞ ¼ �Θ XðtÞ dtþ
ffiffiffiffiffiffiffi
2Θ

p
dBðtÞ; tZ0; ð1Þ

where parameter Θ40 is a real-valued random variable, B(t)
denotes a Brownian motion, and the initial state Xð0Þ �Nð0;1Þ is
independent of B(t). The mean and variance equations for XðtÞjΘ
are well known and equal to _μðtÞ ¼ �ΘμðtÞ and _γ ðtÞ ¼
�2ΘγðtÞþ2Θ, respectively, with initial conditions μð0Þ ¼ 0 and
γð0Þ ¼ 1, so that μðtÞ ¼ 0 and γðtÞ ¼ 1 at all times tZ0. Further, the
covariance function cðsÞ ¼ E½XðtþsÞXðtÞjΘ� satisfies the differential
equation dcðsÞ=ds¼ �ΘcðsÞ with cð0Þ ¼ 1, so that XðtÞjΘ is a
stationary Gaussian process with zero mean and covariance
function cðsÞ ¼ expð�ΘjsjÞ. Since XðtÞjΘ is stationary, its second
moment properties can be calculated more efficiently by analysis
in the frequency domain. For example, the spectral density of this
process is sðνÞ ¼Θ=ðπðν2þπ2ÞÞ.
The finite dimensional distributions of X(t), that is, the uncondi-

tional state of Eq. (1), can be calculated from

PðXðt1Þrx1;…;XðtnÞrxnÞ ¼ EΘ½Φnðx1;…; xn;ρðΘÞÞ�; ð2Þ
where nZ1 is an integer, t1;…; tn are arbitrary times, EΘ denotes
expectation with respect to Θ, and Φn is the joint distribution of
an n-dimensional Gaussian vector with mean zero and covariance
matrix ρðΘÞ ¼ fexpð�Θ jti�tjj; i; j¼ 1;…;ng. The finite dimen-
sional distributions of X(t) can be calculated efficiently in this case
by Monte Carlo simulation since X(t) is a real-valued process and
Θ a random variable. However, the construction of Monte Carlo

estimates for properties of functionals of X(t) becomes impractical
in realistic problems dealing with high dimensional systems
depending on many uncertain parameters since this requires the
generation of many independent samples of XðtÞjΘ for each
realization of Θ. □

Example 2. Let X(t) be the process defined by Eq. (1), and consider
a particular functional of X(t) defined by Xτ ¼max0r trτfXðtÞg,
0oτo1. Our objective is to construct an estimator for the
distribution of Xτ . Consider the conditional estimator

F̂ τðξ∣θÞ ¼
1
b

∑
b

i ¼ 1
1ðXτ;irξ∣Θ¼ θÞ; ð3Þ

where bZ1 is an integer, 1ðAÞ is an indicator function equal to one
if event A is true and zero otherwise, and fXτ;i; i¼ 1;…; bg denote
independent copies of Xτ∣ðΘ¼ θÞ. This conditional estimator is
unbiased, that is, E½F̂ τðξ∣θÞ� ¼ PðXτrξ∣Θ¼ θÞ, with variance

Var½F̂ τðξ∣θÞ� ¼
1
b
PðXτrξ∣Θ¼ θÞð1�PðXτrξ∣Θ¼ θÞÞ; ð4Þ

that converges to 0 as b-1. Since, for ɛ40 arbitrary, we have

PðjF̂ τðξ∣θÞ�PðXτrξ∣Θ¼ θÞj4ɛÞrVar½F̂ τðξ∣θÞ�
ɛ2

ð5Þ

by Chebyshev's inequality [2, Section 2.12], the discrepancy
between F̂ τðξ∣θÞ and PðXτrξ∣Θ¼ θÞ can be made as small as
desired by increasing b.

The unconditional estimator for the distribution of Xτ is

F̂ τðξÞ ¼ EΘ½F̂ τðξ∣ΘÞ� ¼
Z

F̂ τðξ∣θÞf ðθÞ dθ; ð6Þ

where f ðθÞ denotes the probability density of random variable Θ
defined by Eq. (1). Generally, the integral in Eq. (6) needs to be
calculated numerically. The calculation of this integral by numer-
ical integration or Monte Carlo simulation may not be feasible
since these methods require estimators F̂ τðξ∣θÞ for many values of
Θ, and the construction of each conditional estimator is based on
generated samples of X(t) for specified values of Θ. We propose an
alternative approach, that is based on the representation of Θ by
stochastic reduced order models (SROMs). □

2.1. SROMs for uncertain system parameters

A SROM ~Θ for ΘARq is a simple random vector with samples
~θkARq of probabilities pk, k¼ 1;…;m, where mZ1 is an integer,
pkZ0, and ∑m

k ¼ 1pk ¼ 1 [5,6]. The random variable ~Θ is defined on
the same probability space as Θ. Any collection ð ~θk; pkÞ,
k¼ 1;…;m, of samples and probabilities defines a SROM ~Θ for
Θ. We are interested in a stochastic reduced order model ~Θ that,
for a selected size m, describes the probability law of Θ in an
optimal sense.

Optimization algorithms have been proposed to construct
SROMs [5]. For example, ifΘ¼Θ is a real-valued random variable,
the optimal probabilities fpkg for a set ð ~θ1;…; ~θmÞ of selected
samples can be obtained by minimizing the discrepancy between
the distributions and some of the moments of Θ and ~Θ. This
discrepancy can be quantified by the objective function

eðp1;…; pmÞ ¼ α1max
θ

jFðθÞ� ~F ðθÞjþα2 ∑
r

r ¼ 1

μðrÞ� ~μðrÞ
μðrÞ

����
����; ð7Þ

where F denotes the distribution of θ, μðrÞ ¼ E½θr�, ~F ðθÞ ¼
∑m

k ¼ 1pk1ð ~θkrθÞ denotes the distribution of ~θ , ~μðrÞ ¼ E½ ~θr � ¼
∑m

k ¼ 1pk
~θ
r
k, rZ1 is an integer, and α1;α240 are coefficients

selected such that the two terms of the objective function
eðp1;…; pmÞ have similar order of magnitude.
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