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a b s t r a c t

This paper evaluates the accuracy of several hundred one-day-ahead value at risk (VaR) forecasts for
predicting Australian electricity returns. We propose a class of observation-driven time series models
referred to as asymmetric exponential generalised autoregressive score (AEGAS) models. The mechanism
to update the parameters over time is provided by the scaled score of the likelihood function in
the AEGAS model. Based on this new approach, the results provide a unified and consistent framework
for introducing time-varying parameters in a wide class of non-linear models. The Australian energy
markets is known as one of the most volatile and, when compared to some well-known models in the
recent literature as benchmarks the fitting and forecasting results demonstrate the superior performance
and considerable flexibility of proposed model for electricity markets.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we examine the distributional properties of
electricity returns in Australia. The Australian electricity market
is one of the most volatile energy markets in the world, [58]. It
is not unusual to observe annualised volatilities of more than
1000% on daily spot prices. Additionally, spot prices exhibit pos-
itive price spikes. In contrast to the jumps observed in the
financial markets, spot price spikes are normally quite short-lived,
and as soon as the weather phenomenon or outage is over, prices
fall back to a normal level. These are both intriguing and chal-
lenging from the statistical and risk-management points of view.

Trading in electricity markets is challenging because spot prices
are highly volatile and exhibit occasional extreme price movements
of magnitudes rarely seen in markets for traditional financial assets
(cf. [14,44,52]). These extreme movements are attributable to

several distinctive features of electricity markets: (1) electricity
cannot be stored effectively through time and space 1; and (2)
electricity prices have inelastic demand curves and kinked supply
curves ([16,67]).

As a result, energy industry participants often self-impose
trading limits to prevent extreme price fluctuations from
adversely affecting firm profitability. Indeed the operation of the
entire industry require optimal trading limits to allocate capital
to cover potential losses should the trading limits be violated.
Obviously, over-capitalisation implies idle capital and compromises
profitability. On the other hand, under-capitalisation may cause
financial distress should the firm be unable to honour its trading
contracts. From a trader's point of view, it is important to prevent
such extreme price fluctuations from affecting their firm's profit-
ability. As evidence in this concern, risk management measures
need to be at hand in order to prepare for extreme events, whether
defining trading limits of operation or estimating savings re-
quirements on a given period. One of the most common of these
measures is the Value at Risk (VaR), which is frequently used to
establish trading limits, estimating the amount that a firmmay lose
in a certain horizon given a statistical probability.

The above definition involves two quantitative factors: the ho-
rizon and the given confidence level. In the early stage, a certain
amount of past returns were assumed to follow either some
empirical or normal distributions, from which tail quantiles are
computed for VaR forecasting. Later, Gaussian mixtures and
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Students t-distributions were also considered to deal with high
excessive kurtosis of financial time series [53]. Although conve-
nient, all the above-mentioned methods did not gain much popu-
larity in practice since they failed to capture the prominent
characteristics of financial time series data such as dependence
among data and volatility clustering (cf. [65]). Accordingly, practi-
tioners have desired to develop more efficient VaR forecasting
methodologies.

Generalised autoregressive conditional heteroskedastic
(GARCH) models, proposed by Ref. [9], have long been popular due
to their capability to effectively capture high excessive kurtosis,
dependence, and volatility clustering. Suitable surveys of GARCH
modelling in the spot electricity markets may be found in
Refs. [19,36,50]. GARCH models are often combined with autore-
gressive (AR) models to provide a better fit to financial time series,
and conventionally, are assumed to have Gaussian innovations;
such GARCH models are referred to as normal AReGARCH models.
These models seemingly outperform conventional normal GARCH
models in terms of VaR forecasts (cf. [3,48]).

The main contribution of this paper is to apply a framework for
time-varying parameters which is based on the score function of
the predictive model density at time t. We will argue that the score
function is an effective choice for introducing a driving mechanism
for time-varying parameters, which in turn provides us with amore
accurate estimates of VaR. We refer to our observation-driven
model based on the score function as the (asymmetric) exponen-
tial generalized autoregressive score or AEGAS model, which is a
variation of the generalised autoregressive score (GAS) model of
[26]. The GAS class of models has the advantages of other
observation-driven models. Likelihood evaluation is straightfor-
ward. Since the AEGAS model is based on the score, it exploits the
complete density structure rather thanmeans and higher moments
only. It differentiates the AEGAS model from other observation-
driven models in the literature, such as the generalized autore-
gressive moving averagemodels of [6] and the vector multiplicative
error models of [23].

Due to the stylised features of electricity returns, we only use
(skewed) Student-t for the distribution of innovations. This class of
GAS models was also discussed in Ref. [46], as the generalised form
of GARCH models with Beta distribution. The authors also consid-
ered the logarithmic form of the volatility process, which they
termed, Beta-t-EGARCH, as a generalised form of EGARCH models.
In principle, Beta-t-EGARCH is the same model as EGAS, except for
some minor specifications, which we discuss in Section 4.
Throughout this paper, we will refer to the model as ‘asymmetric’,
whenever the skewed Student-t fits the innovation process better
than the Student-t distribution. We adopt the skewing method
proposed by Ref. [39], for the clarity and convenience in
presentation.

While it is important to have a well-specified model that
describes the data, most of the time we are interested in utilising
the model in predictions. For this reason, we conduct an out-of-
sample evaluation of the proposed models. A comparison of
volatility models should therefore include alternatives that ac-
count for empirical features such as jumps and fat-tails of
electricity returns. Although [10], includes more than 100 GARCH
specifications in his glossary, it is necessary to be selective
in comparing these models. In addition, some models are special
cases of others. There are three main time-series approaches
in electricity modelling, namely, (1) univariate conditional vola-
tility models [30], (2) multi-variate conditional volatility models
[49], and (3) extreme value (EV) conditional volatility models
[13,59]. The model proposed in this paper, AEGAS, falls within the
first group, but we will show that it outperforms every other
model.

A crucial issue that arises in this context is how to evaluate the
performance of a VaR model. According to [42], when several risk
forecasts are available it is desirable to have formal testing pro-
cedures for comparison. These do not necessarily require knowl-
edge of the underlying model, or if the model is known, do not
restrict attention to a specific estimation procedure [55]. pioneered
an approach to detect systematic errors of models in predicting
one-step-ahead VaR, which he termed violations [22]. points out
that the problem of determining the accuracy of a VaRmodel can be
reduced to the problem of determining whether the sequence of
violations satisfies two properties; namely, Unconditional Coverage
Property and the Independence Property. When both hypotheses are
simultaneously valid, VaR forecasts are said to have a correct con-
ditional coverage, and the VaR violation process is a martingale
difference.

We evaluate the forecasting performance of our model and
compare it with the set of competing models, through by con-
ducting the Kupiec test of [55] and the Dynamic Quantile test of
[27,33]. We hasten to add that the sort of omnibus backtesting
procedures suggested here are the statistical diagnostic tests car-
ried out on various aspects of the risk model in the model esti-
mation stage (cf. [20]), we avoided experimenting with very recent
developments in the back-testing literature.

The remainder of this paper is structured as follows: Section 2
briefly presents the Australian power market data set studied
here. Section 3 provides a discussion on the methods used to
model the drift of the returns time-series, as well as to capture the
periodicity in the data. In Section 4, the theoretical framework and
the model setting are described at length. Section 5 provides the
definition of VaR and entails the back-testing procedures used in
the paper. A comprehensive discussion of the empirical results is
provided in Section 6. Section 7 concludes the paper.

2. Data description

In this study we use daily spot prices from the five state elec-
tricity markets in Australia: New South Wales (NSW), Queensland
(Qld), South Australia (SA), Tasmania (Tas.) and Victoria (Vic.) For
eachmarket the sample of 1823 daily observations covers the time
period from January 1, 2011 to December 30, 2015. In a similar
manner to [47], all data is obtained from the National Electricity
Market (NEM) Management Company, originally on a half-hourly
basis representing 48 trading intervals in each 24-h period. A
series of daily arithmetic means is calculated from the 48 trading
interval data, from which we calculate the daily logarithmic
return.

By way of comparison [35], employ daily spot prices in their
respective analyses of the western United States, United Kingdom,
Scandinavian and Australian electricity markets. Importantly, the
use of daily prices may lead to the loss of at least some information
impounded in the more frequent trading interval data. The
Australian NEM is considered as the most volatile market featuring
the largest and most frequent number of price spikes. This can be
attributed to two reasons:

1. Unlike other markets, the Australian spot electricity market is
not a day-ahead market but electricity is traded in a constrained
real time spot market where prices are set each 5min by
Australian energy market operator. Therefore, generators sub-
mit offers every 5min. The final price is determined every half-
hour for each of the regions as an average over the 5-min spot
prices for each trading interval [1]. This places balancing de-
mand and supply at a knife-edge as very small changes in
amount of electricity generated or change in demand can cata-
pult into large changes in electricity prices (aka jumps or spikes).
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