Accepted Manuscript

Internal Resistance and Heat Generation of Soft package ${\rm Li_4Ti_5O_{12}}$ Battery during Charge and Discharge

Kangkang Wang, Fei Gao, Yanli Zhu, Hao Liu, Chuang Qi, Kai Yang, Qingjie Jiao

PII: \$0360-5442(18)30280-9

DOI: 10.1016/j.energy.2018.02.052

Reference: EGY 12352

To appear in: Energy

Received Date: 30 September 2017

Revised Date: 12 January 2018

Accepted Date: 12 February 2018

Please cite this article as: Kangkang Wang, Fei Gao, Yanli Zhu, Hao Liu, Chuang Qi, Kai Yang, Qingjie Jiao, Internal Resistance and Heat Generation of Soft package Li₄Ti₅O₁₂ Battery during Charge and Discharge, *Energy* (2018), doi: 10.1016/j.energy.2018.02.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Internal Resistance and Heat Generation of Soft package Li₄Ti₅O₁₂

Battery during Charge and Discharge

Kangkang Wang^{a, b}, Fei Gao^{b,}, Yanli Zhu^{a, *}, Hao Liu^b, Chuang Qi^a, Kai Yang^b, Qingjie Jiao^a
(a State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081
China;

^b State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems, China Electric Power Research Institute. Beijing 100192, China)

 Abstract: The resistance and heat generation of soft package Li₄Ti₅O₁₂ batteries in two different lifecycle (One was cycled 2100 times at 55 °C and swollen, the other is a new one) were studied in this paper. The ohmic resistance, polarization resistance and electrochemical impedance spectroscopy of these two cells were investigated. Accelerating rate calorimeter was used to study the generated heat at the C-rates of 0.5 C, 2 C and 5 C in charging and discharging processes. The amount of total generated heat, reversible and irreversible were obtained. The results showed that ohmic resistance of the swollen battery was higher than that of the new one, while polarization resistance tended to be smaller. The heat produced during discharge was greater than that by charge. In single charge or discharge process, the heat generation rate of the swollen battery was higher than that of the new one at all C-rates. The swollen battery released more reversible heat in charging process, especially at a lower state of charge.

Keywords: Lithium titanate; Lithium-ion battery; Swelling; Resistance; Heat generation

Nomenclature		R_p	The polarization resistance, Ω
Abbreviations, description		I	The working current, A
ARC	Accelerating Rate Calorimeter	m	The mass of the battery, g
CC	Constant Current	η	The over potential, V
СНА	Charge	Δt	The time of charge or discharge, s
CPE	Constant Phase Element	T	The working temperature of the battery, K
C-rate	Current rate	ΔS	The entropy change of the reversible
			chemical reaction, J·mol ⁻¹ ·K ⁻¹
DCH	Discharge	Z	The number of electrons transferred by
			electrode reaction, mol
DOC	Depth of Charge	F	The Faraday constant, 9648534 C·mol⁻¹
DOD	Depth of Discharge	∂E_{ocv}	The entropy coefficient, V·K ⁻¹
		$\left(\frac{\partial U}{\partial T}\right)$	
		$($ $)_p$	
EIS	Electrochemical Impedance Spectroscopy	ΔT	The adiabatic temperature rise, K
HPPC	Hybrid Pulse Power Characterization	dT	The adiabatic temperature rise rate, K·s ⁻¹
		$\frac{d}{dt}$	
LTO	$\text{Li}_4\text{Ti}_5\text{O}_{12}$	$R_{ohm ext{-}dic}$	The ohmic resistance during discharge, Ω

^{*} Corresponding author.

E-mail address: 2120150238@bit.edu.cn (Y. Zhu), wkcalm@163.com (K. Wang).

Download English Version:

https://daneshyari.com/en/article/8071919

Download Persian Version:

https://daneshyari.com/article/8071919

<u>Daneshyari.com</u>