Accepted Manuscript

Energy harvesting with the piezoelectric material integrated shoe

Anil Can Turkmen, Cenk Celik

PII: S0360-5442(17)32202-8

DOI: 10.1016/j.energy.2017.12.159

Reference: EGY 12108

To appear in: Energy

Received Date: 10 November 2016

Revised Date: 20 November 2017

Accepted Date: 30 December 2017

Please cite this article as: Anil Can Turkmen, Cenk Celik, Energy harvesting with the piezoelectric material integrated shoe, *Energy* (2017), doi: 10.1016/j.energy.2017.12.159

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Energy harvesting with the piezoelectric material integrated shoe

Anil Can Turkmen*, Cenk Celik

Department of Mechanical Engineering, Kocaeli University, 41040 Kocaeli, Turkey

Abstract

In our times, the importance of energy efficiency is known by anyone. Besides, it is possible

to reclaim the energy consumed by means of the developed technology. In this study, it is

aimed to reclaim the energy transferred to the ground while people are walking in their daily

lives by using piezoelectric materials, which convert mechanical energy into electrical energy.

Having designed a sole to serve this goal, different piezoelectric materials are placed into the

sole. Its behaviors under human weight are observed using computer software. For this reason,

parametric analyses were carried out using 50, 60, 70, 80, and 90 kg, PZT-5H and PZT-8

piezoelectric ceramics and frames made of steel and aluminum materials as holding bodies of

piezoelectric ceramics as human bodies. As a result of the analysis, a system of PZT-5H

piezoelectric ceramic with a steel frame integrated into a human shoe of a weight of 90 kg used,

showing that 0.4% of the applied force can be harvested to 1.43 mW of electrical power.

Keywords:

Piezoelectric, energy harvesting, human walking, shoe-based generator, PZT,

Comsol Multiphysics

* Corresponding author. Tel.:+90 544 3549282

E-mail address: anilcan.turkmen@hotmail.com (A. C. Turkmen).

1

Download English Version:

https://daneshyari.com/en/article/8071936

Download Persian Version:

https://daneshyari.com/article/8071936

<u>Daneshyari.com</u>