Accepted Manuscript

Probabilistic operation cost minimization of Micro-Grid

Sharmistha Sharma, Subhadeep Bhattacharjee, Aniruddha Bhattacharya

PII: \$0360-5442(18)30192-0

DOI: 10.1016/j.energy.2018.01.164

Reference: EGY 12276

To appear in: Energy

Received Date: 26 July 2017

Revised Date: 10 November 2017

Accepted Date: 29 January 2018

Please cite this article as: Sharma S, Bhattacharjee S, Bhattacharya A, Probabilistic operation cost minimization of Micro-Grid, *Energy* (2018), doi: 10.1016/j.energy.2018.01.164.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Probabilistic Operation Cost Minimization of Micro-Grid

1

2	Sharmistha Sharma ¹ , Subhadeep Bhattacharjee, Aniruddha Bhattacharya		
3	Department of Electrical Engineering,		
4	National Institute of Technology, Agartala, Tripura, 799046 INDIA		
5	e-mail: sharmist	tha.sharma34@yahoo.com, subhadeep_t	ohattacharjee@yahoo.co.in,
6		bhatta.aniruddha@gmail.com	
7	Abstract—In recent years due t	to the increasing integration of Renewal	ble Energy Sources (RES) into the
8	Micro-Grid (MG), necessity of	Battery Energy Storage (BES) has increased	ased quickly and size of BES plays
9	vital role in this regard. Present	paper aims to minimize total operation	cost of MG in presence of BES of
10	optimal size, by considering un	certainties present in the MG. Here, 2m	point estimate method (PEM) has
11	been applied to model the unce	ertainties in load demand, market prices	and available power from RES in
12	the MG , as it is computational	lly efficient and reliable probabilistic i	method. Moreover, Gram-Charlier
13	expansion is used to provide	more accurate probability distribution	of MG operation cost. Classical
14	techniques may be applied here	to solve the problem, but these technique	ues may increase complexity of the
15	problem and hence may affect	et the accuracy. As evolvement of so	oft computing techniques are not
16	restricted by the complexity of	system model, therefore Swine Influenz	za Model Based Optimization with
17	Quarantine (SIMBO-Q) and W	hale Optimization Algorithm (WOA) ha	ave been applied here to minimize
18	operation cost of MG. Simulation	on results obtained by SIMBO-Q and W	VOA prove the effectiveness of the
19	algorithms. Here incorporation	of <i>BES</i> of optimum size reduces operation	on cost of MG effectively.
20	Keywords:- Distributed Genera	tion; Micro-Grid; Uncertainty; Battery	Energy Storage; Swine Influenza
21	Model Based Optimization with	n Quarantine; Whale Optimization Algor	rithm
22	Nomenclature:		
23	Indices:		
24	PV, WT	indices of Photo-Voltaic (PV) and Win	d Turbine (WT) respectively
25	MT, FC	indices of Micro-Turbine (MT) and Fue	el Cell (FC) respectively
26	BES, grid	indices of Battery Energy Storage (BES	S) and grid respectively

¹ Corresponding author: Sharmistha Sharma, e-mail: sharmistha.sharma34@yahoo.com

Download English Version:

https://daneshyari.com/en/article/8072076

Download Persian Version:

https://daneshyari.com/article/8072076

<u>Daneshyari.com</u>