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a b s t r a c t

The reliability of quasi-integrable generalized Hamiltonian systems is studied. An m-dimensional
integrable generalized Hamiltonian system has M Casimir functions C1, . . . , CM and n (n = (m −
M)/2) independent first integrals HM+1, . . . ,HM+n in involution. When an integrable generalized
Hamiltonian system is subjected to light dampings and weakly stochastic excitations, it becomes a
quasi-integrable generalized Hamiltonian system. The averaged Itô equations for slowly processes
C1, . . . , CM ,HM+1, . . . ,HM+n can be obtained by using stochastic averaging method, from which a
backward Kolmogorov equation governing the conditional reliability function and a Pontryagin equation
governing the conditional mean of the first passage time are established. The conditional reliability
function and the conditional mean of first passage time are obtained by solving these equations together
with suitable initial condition and boundary conditions. Finally, an example of a 5-dimensional quasi-
integrable generalized Hamiltonian system is worked out in detail and the solutions are confirmed by
using a Monte Carlo simulation of the original system.

© 2009 Published by Elsevier Ltd

1. Introductions

The first passage problem is significant for structural relia-
bility but it is very difficult to solve. The known exact solution
is limited to the one-dimensional diffusion process. In the past
decades, several numerical methods such as the generalized cell-
mapping procedure [1] andMonte Carlo simulations [2] have been
proposed to obtain the statistics of the first passage problem
for higher-dimensional stochastic systems. At present, a power-
ful approximate technique for analyzing the first passage problem
of higher-dimensional stochastic systems is the combination ap-
proach of the stochastic averaging method and the diffusion pro-
cess theory of the first passage time, which has been applied by
many authors, e.g., [3–8].
Many systems in science and engineering are of odd dimension,

which can be modeled as stochastically excited and dissipated
generalized Hamiltonian systems. Such systems may be classified
into five groups based on the integrability and resonance of the
associated generalized Hamiltonian systems. An m-dimensional
quasi-integrable generalized Hamiltonian system is a generalized
Hamiltonian system with M Casimir functions C1, . . . , CM and n
(n = (m − M)/2) first integrals HM+1, . . . ,HM+n in involution
subjected to lightly linear and (or) nonlinear dampings andweakly
stochastic excitations.
In the present paper, the equations governing a quasi-

integrable generalized Hamiltonian system are reduced to a set of
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averaged Itô stochastic differential equations by using the stochas-
tic averaging method. Then, the backward Kolmogorov equation
governing the conditional reliability function and the Pontryagin
equation governing the conditional mean of the first passage time
are derived from the averaged equations. A 5-dimensional quasi-
integrable generalized Hamiltonian system is taken as an example
to illustrate the proposed procedure. The numerical results for the
example are verified by using those from aMonte Carlo simulation.

2. Stochastic averaging

Anm-dimensional dynamical system governed by

ẋi = J ′ij (x)
∂H ′

∂xj
; i, j = 1, . . . ,m (1)

is called a generalized Hamiltonian system. In Eq. (1) x =

[x1, . . . , xm]T is a state vector; the dot denotes the derivative with
respect to time t; H ′ = H ′(x) is a twice differentiable generalized
Hamiltonian; [J ′ij(x)] is anm×m anti-symmetric structural matrix,
which satisfies the Jacobi identities [9] and, therefore, provides a
generalized Poisson bracket

[F ,G] =
m∑
i=1

m∑
j=1

∂F
∂xi
J ′ij (x)

∂G
∂xj

(2)

for two dynamical quantities F(x) and G(x) in phase space.
A function F = F(x) is called a first integral of system (1) if

[F ,H ′] = 0. A function C = C(x) is called a Casimir function if
[C,G] = 0, where G = G(x) is any real-valued function. Obviously,
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a Casimir function is a first integral of the system (usually general-
ized Hamiltonian systems). Anm-dimensional integrable general-
izedHamiltonian systemhasM Casimir functions C1, . . . , CM and n
(n = (m−M)/2) independent first integralsHM+1, . . . ,HM+n in in-
volution. The last termmeans that the generalized Poisson bracket
of any two first integrals Hi and Hj vanishes, i.e., [Hi,Hj] = 0.
A quasi generalized Hamiltonian system is a generalized

Hamiltonian system subjected to light dampings and weakly
stochastic excitations governed by the following equations:

Ẋi = J ′ij (X)
∂H ′

∂Xj
+ εd′ij (X)

∂H ′

∂Xj
+ ε1/2fis (X)Ws (t)

i, j = 1, . . . ,m; s = 1, . . . , l (3)

where X = [X1, . . . , Xm]T; [J ′ ij(X)] is an m × m anti-symmetric
structural matrix; H ′(X) is a twice differentiable generalized
Hamiltonian; εd′ij(X) and ε

1/2fis(X) are the coefficients of quasi-
linear dampings and the amplitudes of stochastic excitations,
respectively; ε is a small positive parameter; Ws(t) are Gaussian
white noises in the sense of Stratonovichwith correlation functions
E[Ws(t)Wz(t + τ)] = 2Dszδ(τ ), s, z = 1, . . . , l.
Eq. (3) can be modeled as Stratonovich stochastic differential

equations and then converted into Itô stochastic differential
equations by adding the Wong–Zakai correction terms Dsz fjsfiz/Ẋj.
Splitting the Wong–Zakai correction terms into conservative
part and dissipative part, and combining the two parts with
J ′ij(X)∂H

′/∂Xj and d′ij(X)∂H
′/∂Xj, respectively, Eq. (3) is converted

into the following Itô equations:

Ẋi =
[
Jij (X)

∂H
∂Xj
+ εdij (X)

∂H
∂Xj

]
dt + ε1/2σis (X) dBs (t)

i, j = 1, . . . ,m; s = 1, . . . , l (4)

where [Jij(X)] is a modified structural matrix; H is a modified
Hamiltonian; εdij(X) is the coefficients of modified quasi-linear
dampings; Bs(t) are the standard Wiener processes and σσT =
2fDfT.
Assume that the generalized Hamiltonian system governed by

Eq. (4) with ε = 0 is integrable. Then, the Eq. (4) describes a quasi-
integrable generalized Hamiltonian system. In principle, n (n =
(m − M)/2) pairs of action-angle variables Ik, 2k (k = 1, . . . , n)
can be introduced. Make the transformation

Cv = Cv (X) ; Iv1 = Iv1 (X) ; 2v1 = 2v1 (X)

v = 1, . . . ,M; v1 = 1+M, . . . , n+M. (5)

Then, the Itô equations for C1, . . . , CM , IM+1, . . . ,
IM+n, 2M+1, . . . ,2M+n can be derived from Eq. (4) by using the
Itô differential rule as follows:

dCv = εU (1)v dt + ε
1/2σis

∂Cv
∂Xi
dBs

dIv1 = εU
(1)
v1
dt + ε1/2σis

∂ Iv1
∂Xi
dBs

d2v1 =
(
ωv1 + εU

(2)
v1

)
dt + ε1/2σis

∂2v1

∂Xi
dBs

v = 1, . . . ,M; v1 = M + 1, . . . ,M + n; s = 1, . . . , l (6)

where

U (1)v = dij
∂Cv
∂Xi

∂H
∂Xj
+
1
2
σisσjs

∂2Cv
∂Xi∂Xj

U (1)v1 = dij
∂ Iv1
∂Xi

∂H
∂Xj
+
1
2
σisσjs

∂2Iv1
∂Xi∂Xj

U (2)v1 = dij
∂2v1

∂Xi

∂H
∂Xj
+
1
2
σisσjs

∂22v1

∂Xi∂Xj
(7)

where X on the right-hand side of Eq. (6) should be replaced by
C1, . . . , CM , IM+1, . . . , IM+n,2M+1, . . . ,2M+n in terms of Eq. (5).
In the non-resonant case, C1, . . . , CM , IM+1, . . . , IM+n are slowly

varying processes while 2M+1, . . . ,2M+n are rapidly varying
processes. According to a theorem due to Khasiminskii [10]
C1, . . . , CM , IM+1, . . . , IM+n converge weakly to a (M + n)-
dimensional diffusion process as ε→ 0 in a time interval 0 ≤ t ≤
T , where T ∼ 0(ε−1). The Itô equations for an (M+n)-dimensional
diffusion process are obtained by applying time averaging to
Eq. (6) under the condition that the C1, . . . , CM , IM+1, . . . , IM+n on
the right-hand of Eq. (6) are kept constant. Since the phase flow of
an integrable and non-resonant generalized Hamiltonian system
is ergodic on the manifold of constant IM+1, . . . , IM+n, C1, . . . , CM ,
the time averaging can be replaced by phase space averaging with
respect to 2M+1, . . . ,2M+n. Thus, the averaged Itô equations for
C1, . . . , CM , IM+1, . . . , IM+n are of the form

dCv = εŪ ′v (C, I) dt + ε
1/2σ̄ ′vs (C, I) dBs

dIv1 = εŪ
′

v1
(C, I) dt + ε1/2σ̄ ′v1s (C, I) dBs

v = 1, . . . ,M; v1 = M + 1, . . . ,M + n; s = 1, . . . , l (8)

where

Ū ′v =
〈
dij
∂Cv
∂Xi

∂H
∂Xj
+
1
2
σisσjs

∂2Cv
∂Xi∂Xj

〉
2

Ū ′v1 =
〈
dij
∂ Iv1
∂Xi

∂H
∂Xj
+
1
2
σisσjs

∂2Iv1
∂Xi∂Xj

〉
2

b̄′v2v3 = σ̄
′

v2sσ̄
′

v3s =

〈
σisσjs

∂Cv2
∂Xi

∂Cv3
∂Xj

〉
2

b̄′v2v1 = σ̄
′

v1sσ̄
′

v2s =

〈
σisσjs

∂Cv2
∂Xi

∂ Iv1
∂Xj

〉
2

b̄′v4v5 = σ̄
′

v4sσ̄
′

v5s =

〈
σisσjs

∂ Iv4
∂Xi

∂ Iv5
∂Xj

〉
2

〈•〉2 =
1

(2π)n

∫ 2π

0
[•] d2

v, v2, v3 = 1, . . . ,M; v1, v4, v5 = M + 1, . . . ,M + n. (9)

Since H = H(I), the equations for Ik in Eq. (8) can be replaced
by those for Hk by using the Itô differential rule. The resultant
averaged Itô equations for C,H are of the following form:

dCv = εŪv (C,H) dt + ε1/2σ̄vs (C,H) dBs
dHv1 = εŪv1 (C,H) dt + ε

1/2σ̄v1s (C,H) dBs
v = 1, . . . ,M; v1 = M + 1, . . . ,M + n; s = 1, . . . , l (10)

where

Ūv = Ū ′v; Ūv1 = Ū
′

v1

∂Hv1
∂ Iv1
+
σ̄ ′v1sσ̄

′
v4s

2
∂2Hv1
∂ Iv1∂ Iv4

b̄v2v3 = b̄
′

v2v3
; b̄v2v1 = b̄

′

v2v1

∂Hv1
∂ Iv1

b̄v4v5 = b̄
′

v4v5

∂Hv4
∂ Iv4

∂Hv5
∂ Iv5

v, v2, v3 = 1, . . . ,M; v1, v4, v5 = M + 1, . . . ,M + n (11)

in which I are replaced by H in terms of H = H(I).

3. Backward Kolmogorov equation

Generally, the generalized Hamiltonian H represents the total
energy while the first integral Hv1 and Casimir function Cv rep-
resent the energies of its sub-systems. Suppose that the averaged
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