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a b s t r a c t

The accuracy of building energy simulations is of considerable interest as discrepant results can elicit
adverse financial and environment consequences. The physical and temporal scales considered within
building energy applications necessitate compact modelling approaches. The prediction accuracy of such
simulations is intrinsically linked with the ability to predict the thermal responses of structural elements.
The optimal means of representing these components such that accurate solutions are ensured at
minimal computational cost remains unclear. The current study seeks to optimise the spatial placement
of nodes through assessing and reporting results pertaining to a logarithmic spatial discretisation
method. Contour plots are presented to intuitively determine optimal discretisation levels and time steps
required for accurate thermal response predictions. This is achieved by comparing numerical solutions of
varying discretisation levels with benchmark analytical solutions. Results are reported in terms of gov-
erning dimensionless parameters, Biot and Fourier numbers, to ensure generality of findings. Further-
more, spatial and temporal discretisation errors are separated and assessed independently. Finally,
models derived using the proposed guidance achieve high levels of prediction accuracy for typically
encountered boundary conditions with buildings.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Buildings account for approximately 40% of the primary energy
consumption within the EU [1,2]. A myriad of options are available
to reduce energy consumption in buildings, however, choosing one
solution that provides optimal financial or environmental out-
comes is a nontrivial matter. This is due to each building having
unique operating conditions which are heavily dependent on their
design parameters, i.e. climatic conditions, occupancy schedules,
architectural designs and the multitude of materials used during
construction. The complex nature of building thermal dynamics has
motivated the use of simulations as decision-making tools. It is
essential that simulations are highly accurate to ensure their
effectiveness in evaluating any potential energy saving measures.

Many building energy softwares have been developed and a full
review of many of these programs compared and contrasted by

Crawley et al. [3]. Probably the most commonly used building en-
ergy software packages is EnergyPlus. Developed by the U.S.
Department of Energy, EnergyPlus provides a flexible modelling
tool capable of simultaneously simulating thermal zones, transient
storage effects and energy system demands. The main concepts of
EnergyPlus are discussed by Crawley et al. [4]. Mathematical ap-
proaches based on the discretisation of governing heat transfer
equations are employed, with two solution methods available for
simulating thermal responses in structural elements. These are the
conduction transfer function (CTF) method and the implicit finite
difference approach [5]. The CTF method is the default solution
approach and employs a space-state solution to obtain heat fluxes
at the inner and outer surfaces of structures. The implementation of
this approach is based on the work of Seem [6]. Alternatively, the
finite difference approach allows for both internal and surface
temperatures to be calculated. These two approaches employ the
same finite difference discretisation scheme. Studies have shown
that the default discretisation approach currently used within the
CTF approach has certain limitations when applied to situation
regarding high thermal mass or low conductivity [7] and when
short time steps are used [8].
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In a previous study by the authors [9], guidelines were pre-
sented on the optimal number of evenly-spaced discretisation
nodes required to accurately predict thermal responses in thermal
storage media. The results were presented in terms of governing
dimensionless parameters, the Biot and Fourier number. Notably,
the study showed the importance of considering the boundary
conditions, characterised by the Biot number, when determining
discretisation levels. While the guidance ensured accurate simu-
lation predictions for local temperatures and energy storage,
computational efficiency could be enhanced by optimising nodal
positions by utilising uneven nodal spacing.

Optimal computational efficiency is achieved by including the
minimal number of nodes required to accurately predict thermal
responses. A number of studies have implemented optimisation
routines to extend the applicability of models with a pre-defined
number of elements. By fixing the number of nodes, attractive
computational times can be ensured. The optimisation routines are
employed to determine effective thermal resistance and capaci-
tances so that model predictions match either experimental data or
benchmark solutions. Both studies by Gouda et al. [10] and Un-
derwood [11] focused on optimising two-node ð3R2CÞ models of
typical building constructions. In these studies the values of each
thermal resistance and capacitance term was altered to minimise
the difference between the predicted surface temperatures from
the two-node model and the predictions provided from a detailed

reference model. In the study by Underwood, predicted tempera-
tures from a building model derived from his parametric results
were compared to those provided by a reference model. The results
showed root-mean square errors ranging between 0:1� 0:5K for all
surface and zone temperature predictions.

Furthermore, Fraisse et al. [12] examined the use of a four-
element model (3R4C) to improve the initial response of simula-
tions to changes in boundary conditions. The two outer elements of
this four-element model were each attributed 5% of the total
thermal capacitance. In addition to the fourth-order model, two
other compact models were assessed. These were: (i) a two-
element model with elements placed at the outer surfaces; (ii)
and a two-element model with nodes placed in the centre of the
cells i.e. the thermal resistance between the outer nodes and the
ambient environment include a conductive resistance term. Model
parameters were determined analytically and simulation accuracy
was assessed through comparison to a one-hundred element
benchmark solution. The results showed that the fourth-element
model initially achieved higher accuracy compared to the cell-
centred two-element model, however, as time progressed both
offered near identical results. Both of these cell-centred models
surpassed the prediction accuracy of the surface-node model.

Developing discretisation schemes that can be algorithmically
applied to all structures has also been explored. These schemes
have a fixed method of distributing elements and use discretisation

Nomenclature

Dimensionless numbers

q� Dimenisonless temperature, TðtÞ�Tint
T∞�Tint

Bi Biot number, hLck
Fo Fourier number, atL2c
Q� Dimenisonless energy, QðtÞ�Qint

Q∞�Qint

x� Dimenisonless distance, x=L
_q Heat flux W

English symbols
ℛ Overall discretisation effect
ℛs Spatial discretisation effect
ℛt Temporal discretisation effect

F
!

Future temperatures

O
!

All boundary conditions

P
!

Present temperatures
v! Eigenvector
A Area m2

Ci ith Coefficient
cp Specific heat capacity J=kg,K
Cth Thermal capacitance J=K
h Convective heat transfer coefficient W=m2,K
HðsÞ Transfer function evaluated for the frequency s
I Identity matrix
i Index of element under consideration
j Index of adjacent element
k Thermal conductivity W=m,K
L Distance to core of a wall m
Lc Characteristic length, Lc ¼ L±dxo m

Mo Coefficient matrix of the vector O
!

n Number of spatially discrete nodes
Q Change in internal energy storage J
q

0 0
Volumetric heat generation W=m3

Rth Thermal resistance K=W
SA Coefficient matrix of state space system
T Temperature K
t Time s
U U-value W=m2,K
V Volume m3

x Spatial coordinate m
z Eigenvalue/eigenvector solution coefficient matrix
a Distribution exponent
b Distribution base
dxo Displacement of point of inflection from geometric

centre m
p Location of partition between elements

Greek symbols
a Thermal diffusivity m2=s
l Eigenvalue
r Density kg=m3

Mathematical symbols
D Discrete distance
v Partial derivative
/ Vector

Subscripts
∞ Ambient
an Analytical solution
dir direct solution
int Initial condition
num Implicit numerical solution
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