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a b s t r a c t

Load prediction is the first step in designing an efficient community district heating system (CDHS). Even
though several methods have been developed to predict the heating demand profile of buildings, there is
a lack of method that can predict this profile for a large-scale community with a numerous user types in a
timely manner and with an appropriate level of precision.

This paper, first briefly describes the 4-step procedure developed earlier, utilizing a Multiple Non-
Linear Regression (MNLR) method, for predicting the heating demand profile of district, followed by
description of the community structure, and its district system. It also reports the field measurement
procedure for collecting the data required and the preliminary analysis data. Results obtained from a
continuous monitoring of the CDHS over a two-year period is employed to validate the accuracy of the
developed model in the predicting the CDHS's heating load profile. Finally, using the 4-step procedure,
the district's energy demand profile is predicted, and compared with both the measured data and the
initial prediction. The outcome shows a less than 11.2% in the mean square root error (MSRE) of the
predicted and measured load profiles.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Providing secure and clean source of energy to respond the
households' demand is one of the upmost fundamental challenges
faced by the energy planners. In effect, households represent a
significant share of the total energy demand; they are responsible
for 40% and 26% of the total energy consumption in North America
and Europe, respectively [1]. In the last few decades, using fossil
fuels as the world's main energy source has resulted in their
depletion and increased the level of CO2 equivalent emissions.
There are targets for reductions in CO2 emissions worldwide. Spe-
cifically, the Energy Technology Perspective 2012 Roadmap (IEA)
aims to reduce CO2 emissions by 50% [2]. Given the expected rise in
household energy consumption, the building sector is now
required to adapt to the new ambitious demands of developing
Net-Zero Energy Buildings/communities (NZEB) by 2050.

Numerous building energy conservation strategies have been
tested using energy storage [3e5] and user-demand [6] methods.

The Hybrid Community-District Heating System (H-CDHS) is a
unique energy management alternative given its storage and
renewable systems are integrated in the district's thermal energy
system. Since the energy generated by renewable sources is not
uniform throughout the day, a thermal energy storage unit allows
the system to synchronize with the supply and demand. To
implement this system effectively, it is essential to predict the H-
CDHS0 detailed energy demand profile [7].

Hence, several methods have been developed to model build-
ings' energy demand profile [8e10]. Given its restricted number of
users, a small-scale H-CDHS energy demand profile can be pre-
dicted using a detailed model of users' consumption created with
energy simulation models [8]. Conversely, in large district scale
systems, due to the large volume of users, a comprehensive
modeling is time-consuming, computationally expensive and
sometimes impractical. Some researchers used comprehensive
models to predict the heating demand profile of larger scale com-
munities [11,12]. To overcome this problem, variety of simplified
models were developed to predict the heating demand profile or
total energy demand of large communities. These simplified
models could be divided into four major categoriesdblack box* Corresponding author.
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models (e.g. ANN) [13]; gray box models [14,15]; equivalent RC
networks [16e18]; and regression models [19e24]. Regardless of
the method chosen, previous demand estimates focused mainly on
predicting the peak and total energy demand. Only few studies
tried predicting the demand profile [11,14,23].

Though these simplified models could reduce the computa-
tional time to a fraction of that of comprehensive models, their
simplicity would compromise the prediction accuracy due to lim-
itation of the simplified models. Three major drawbacks could be
assumed for most of these simplified modes. First, the low pre-
diction accuracy emerging from assumptions made inmodeling the
individual buildings/units a) presentation of the occupants'
behavior and, b) the interaction of each building with surrounding
buildings in an urban setting. One of the most challenging issues of
heating demand prediction models is having to correct input pa-
rameters. Input parameters that are dependent on occupants'
behavior/activities, including heating set points and schedules;
Internal heat gain due to occupants' activity and the building's
heating system; natural ventilation flow rate; solar gains from us-
ing windows blinds or shades, etc. Second, scaling effects impair
accuracy by oversimplifying scaling methods that extrapolate re-
sults from building level to the district level. And third, flexible
methods that predict community load profile in diverse building
types. More details regarding the limitation of previous projects
can be found in previous works done by authors [8,25]. Table 1
summarizes studies related to CDHS0 heat demand prediction. A
closer analysis of existing models reveals that the current scholar-
ship requires further validation of models that predict heating
demands using measured data.

This paper endorses a 4-step procedure developed to predict the
energy demand profile for H-CDHS. It, first briefly describes the 4-
step procedure [25] developed earlier for predicting the heating
demand profile of district, followed by description of the commu-
nity structure, and its district system. It also reports the field
measurement procedure for collecting the data required for vali-
dating the model from the West Whitlawburn Housing Co-
Operative (WWH) CDHS in Scotland. The measurement tech-
nique, and the preliminary analysis data are explained. Finally,

using the 4-step procedure, the district's energy demand profile is
predicted, and compared with both the measured data and the
initial prediction.

2. Methodology

2.1. The four-step demand profile procedure

Talebi et al. [25] developed a simplified model to predict the
heating demand profile and peak loads in complex district systems.
Fig. 1 shows the procedure used in the development of the
simplified models. The procedures are based on the Multiple Linear
Regression (MLR) and Multiple Non-Linear Regression (MNLR)
methods. In this four-step procedure, the entire district's heating
demand profile is predicted bymodeling each individual unit in the
community using its physical and geometrical characteristics, the
regions' meteorological information, and the occupants' general
behavior.

1) In the first step, a sample building stock model (BSM) is
segmented into different archetypes, and a reference building is
defined for each archetype. The initial segmentation is
completed by considering the building's construction method,
physical and geometrical properties, and construction period
[25]. Once the initial archetypes are determined, each archetype
is further divided into sub-archetypes based on the occupancy
schedule (e.g. residential user with high, medium and low us-
age, etc.) of the building within that archetype. Different
methods are used for segmenting the BSM based on the occu-
pancy schedule. While some researchers only segment the BSM
based onmajor occupancy types (e.g. residential, commercial, or
office types), others segment it following the user's energy
profile. This study presents a more detailed approach for
defining the number of archetypes as well as the reference
building for each archetype. A hierarchical clustering method
was adopted for this end. In this method, the data set is split into
a prefixed number of clusters. The building closest to the
centroid of that cluster is defined as a reference building for that

Table 1
Load prediction summary.

Author Ref Year Prediction period Prediction Type/Resolution Method

Fonsenca et al. [26] 2015 Annual Total Energy Demand Simplified Modeling/Adjusted HDD
Powell et al. [13] 2014 Daily One day forecasting NARX**; ANN
Tuominen et al. [19] 2014 Annual Total Energy Demand Linear Development Using REMA
Filogamo et al. [16] 2014 Annual Total Energy Demand Simplified Equivalent RC
Koene et al. [17] 2014 Annual Total Energy Demand Simplified Equivalent RC
Gadd et al. [27] 2013 Daily Average Daily and Hourly Variation Time Series
Caputo et al. [28] 2013 Annual Total Energy Demand Comprehensive Modeling
Nouvel et al. [29] 2013 Annual Total Energy Demand Quasi State Monthly Energy Balance
Galante et al. [20] 2012 Annual Total Energy Consumption Linear Regression Analysis
Ali et al. [30] 2011 Annual Peak Load and Total Demand Multivariant Regression
Lee et al. [15] 2011 Annual Total Energy Demand Gray Box Model
Theodoridou et al. [12] 2011 Annual Annual Peak Demand Comprehensive Modeling
Goia et al. [31] 2010 Monthly Peak Load Forecasting Linear Regression & Clustering
Mavrogianni [21,24] 2009 Annual Annual Heating Degree Day Linear Regression
Linda Pedersen et al. [22] 2008 Annual Linearized peak Day Profile* Linear Regression
Ihara et al. 2008 Annual Total Energy Demand Gray Box
Heiple et al. [11] 2008 Annual Hourly/Total Energy Demand Software Modeling, "eQUEST00

Nielsen et al. [14] 2006 Annual Profile Gray Box
Tanimoto et al. [32] 2008 Annual Peak Demand Stochastic method
Koroneos 2005 Annual Total Energy Demand Gray Box
Ratti et al. 2004 Annual Total Energy Demand Multivariant Regression
Shimoda et al. [33] 2004 Annual Total EUI/Total Energy Demand Software Modeling, "SCHEDULE00

Eicker [18] 2004 Annual Total Energy Demand Simplified Equivalent RC
Dotzauer [23] 2002 Annual Profile Linear Regression

**NARX: nonlinear autoregressive network with exogenous inputs.
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