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a b s t r a c t

Compressive strength of porous materials, especially of cement gels, has been estimated by means of
fractal dimension of fracture surfaces. The relationship between mechanical strength and fractal charac-
teristics of porous gels has been derived and tested experimentally using samples of cement gels. The
dimensions of fracture surfaces have been found to be general parameters independent on the fractal
dimensions of inner material components.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Fracture mechanics and fracture phenomena [1] are subjects of
extensive research in the field of material science and physics of
stochastic processes. Fracture surfaces of brittle and quasi-brittle
materials are characterized by complex morphology that is a con-
sequence not only of the fracture process itself but also the inner
material texture and microstructure arrangement. By introducing
fractal geometry in fracture phenomena [2] a permanent interest
in the fractal analysis of fracture surfaces has been initiated. The
fractal method proved to be a fruitful tool for studying morphology
and physical properties of fracture surfaces of solids, especially
those of metallic nature. Nevertheless, when some authors tried
to correlate the fractal dimensions of fracture surfaces of non-
metallic porous composites with mechanical strength, they did
not largely found convincing results. The reason consists in a more
complicated morphology of fracture surfaces of composite materi-
als and this requires a certain refinement of the fractal method,
especially as to the statistical and selective approach to the prob-
lem. As will be shown in the present paper, porous composite
materials may manifest a spectrum of fractal dimensions on their
fracture surfaces and this must be carefully accounted for in the
analysis. In recent years, it is the porous cementitious materials
whose fracture surfaces are subjected to detailed studies and ana-
lyses [3].

It is well known that porosity of materials strongly influences
their mechanical strength, especially, compressive strength. Pores
are inherent part of inner structure. They are formed as a spatial
complement to the solid material components that are usually

built up of microscopic particles, globules or grains. Porous media
of this type represent a broad class of materials widely used in
practice. In the past, the pores were mostly investigated indepen-
dently on their solid environment. They were described as fractals
[4] with scaling relations involving their diameters, volumes, num-
ber distributions, surface corrugations, etc. However, all those
parameters result from the solid environment and this fact should
be taken into account in any model describing pore properties.

2. Porosity

Consider a porous material formed by grains of microscopic
size. The grains are arranged by fractals in space. Their number dis-
tribution N scales are related to their size l as follows:

NðlÞ ¼ L
l

� �D

; l < L; ð1Þ

where D is fractal dimension and L correlation length of the fractal
arrangement. The grains may form a fractal cluster. The empty
space among grains is a pore volume V

V � L3 � l3 L
l

� �D

¼ L3 1� l
L

� �3�D
" #

� Vo 1� l
L

� �3�D
" #

: ð2Þ

The porosity P of the cluster

P ¼ VðlÞ
Vo
¼ 1� l

L

� �3�D

; ð3Þ

is only dependent on the fractal dimension D, grain sizel, and corre-
lation length L of the fractal spatial arrangement. The expression of
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porosity (3) modifies its form if the porous material consists of
(n + 1) fractal clusters

P ¼ VðlÞ
Vo
¼ 1�

Xn

i¼0

li

Li

� �3�Di

: ð4Þ

However, relation (4) does not take into account the case of a com-
posite material in which the fractal clusters of characteristic sizes Li

can be stochastically scattered and mixed with other phases so that
the size K of the investigated sample may considerably exceed the
cluster sizes Li�K. In order to generalize relation (4), let use sup-
pose that there are mi fractal clusters with dimension Di in the sam-
ple. Their volume fractions ni = mi L3/K3 enables us to calculate the
porosity of the whole sample as follows:

P �
K3 �

Pn
i¼0mil

3
i

Li
li

� �Di

K3 ¼ 1�
Xn

i¼0

ni
li

Li

� �3�Di

: ð5Þ

Eq. (5) includes all possibilities of fractal, non-fractal (D = 3) or
mixed arrangements of the solid environment surrounding the
pores. Provided there are n + 1 components delocalized over
the whole sample (Li = K, mi = 1, ni = 1), then Eq. (5) converts back
to (4).

3. Compressive strength of porous materials

Compressive strength r of porous materials, especially those of
ceramics, was investigated many times with the conclusion that
the mechanical compressive strength is intimately connected with
total porosity P as a prime factor besides some others of less impor-
tance. These studies resulted in a variety of relations r (P) the
majority of them are equivalent or – at least – similar. For instance,
one of the frequently used relation [5] assumes the form of the
power function r ¼ r�oð1� PÞk and is related to porous metallic
ceramic materials, another from [6] is represented by the exponen-
tial function r ¼ r�o expð�bPÞ which is, in fact, an asymptotic form
of the former power formula for P ? 0. Other authors [7] suggested
the expression r ¼ r�o½1� ðP=PcrÞ1=a� also similar to that of power
form but corrected for a critical porosity Pcr at which compressive
strength approaches zero. There is also another known expression
[8] accounting for the critical porosity r ¼ r�o½1� ðP=PcrÞe��
½1þ f � ðP=PcrÞg �. Besides the mentioned relations there are some
others [9] but that of the initially mentioned ðr ¼ r�oð1� PÞkÞ
seems to be the basic one among all recommended. Therefore, it
would be reasonable to accept it as a background for a further
improvement.

Undoubtedly, the concept of critical porosity is an urgent
requirement that must be considered. In contrast to some authors’
[7] who considered the critical porosity as an absolute threshold be-
yond which the compressive strength falls down to zero r(Pcr) = 0,
we treat the critical porosity in a bit different way. The critical
porosity will represent the value at which the dependency of
strength on porosity ceases – in accord with other works [7] – but
the structure does not break down because of certain remaining
strength so caused by some factors that other authors neglected
when deriving their equations. Among factors which were ne-
glected and which contribute to the remaining strength so there
are the pore liquids, especially those of almost incompressible ones
like water that make the structure more firm. When a continuously
increasing load of higher rate is applied to a rigid porous material
with water inside its pores, the water has no time to flow within
the pore network and the virtual incompressibility of such a liquid
must be taken into account [10]. Therefore, the supposition
r(Pcr) = so seems to be quite reasonable. The corresponding general-
ized power function then reads

r ¼ r�o 1� P
Pcr

� �k

þ so ¼ roð1� P � bÞk þ so;

0 6 b ¼ 1� Pcr 6 1; 0 6 r�o 6 ro ¼
r�o
Pk

cr

ð6Þ

where P is total porosity and r is compressive strength of the sam-
ple with virtually incompressible fluid filling at least a part of its
pore space.

Combining (6) and (5) the compressive strength of porous mat-
ter appears as a function of fractal structure

r ¼ ro

Xn

i¼0

ni
li

Li

� �3�Di

� b

" #k

þ so: ð7Þ

4. Fractal compressive strength

With a mixed structure containing both the fractal and non-frac-
tals regions some of the dimensions Di belong to the volume (mass)
fractals (0 < Di < 3) and some to non-fractal solid phases (Di = 3).
Similarly, when analyzing fracture surfaces of such multi-compo-
nent materials, ‘‘plane” representatives ðD�i Þ of the volume compo-
nents (Di) appear on these surfaces. Those projected surface
‘‘patterns” preserve the fractal or non-fractal characters of their vol-
ume parent objects but their dimensions D�i are smaller than those
of original objects. Provided a fracture surface has its own dimen-
sion S and its morphology being ‘‘typical” rather then ‘‘special”,
the relation between D�i and Di can be expressed [11] as follows:

D�i ¼max 0;Di � ð3� SÞf g; D�i 6 S < 3; ð8Þ

where 3 � S is the co-dimension of the fracture surface. If the frac-
ture surface were the perfect Euclidean plane (S = 2), the expression
(8) would lead to the well known equation D�i ¼ Di � 1. Using (8),
the exponent 3 � Di in Eq. (7) can be replaced by S� D�i and the gen-
eralized Balshin strength function now reads

r ¼ ro

Xn

i¼0

ni
li

Li

� �S�D�i
� b

" #k

þ so: ð9Þ

This function may contain many parameters which makes its fitting
to experimental data very difficult because there might be more
than one ‘‘reliable” set of parameters ro, fnign

i¼1, li, Li, S, D�i , b, k, so.
Fortunately, the structure of porous material often contains only
one type of grains or – at least – one grain type of fractal arrange-
ment (i = 1) dominates over the solid rest (i = 0) that is usually of
non-fractal character ðDo ¼ 3) D�0 ¼ SÞ

r ¼ ro n1
l1
L1

� �S�D�1
þ ðno � bÞ

" #k

þ so ¼ ro n1 expððD�1 � SÞ=AÞ � c
� �k

þ so;

A ¼ 1
lnðL1=l1Þ

; c ¼ ðb� noÞ:

ð10Þ
To our knowledge, the fractal analyses of fracture surfaces published
so far have not distinguished between the dimensions D�i of the pro-
jected objects and the dimension S of the fracture surface itself. Here,
for the first time clear differences between these two kinds of
dimensions are specified and discussed. Although the fracture sur-
face dimension S as a separate parameter and independent on the in-
ner fractal structure may seem to be rather vague, yet, it has clear
interpretation as the fracture surface dimension that would be di-
rectly measurable if the sample were fully compact (non-porous,
i.e. b = 0, so = 0), and, therefore, non-fractal ðDi ¼ 3) D�i ¼ SÞ, which
means a perfect Euclidean body. Nevertheless, the surface itself may
be a fractal with non-integer S, which should even be expected in
majority of cases.
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