Accepted Manuscript

Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection

Suxin Qian, Lifen Yuan, Jianlin Yu, Gang Yan

PII: \$0360-5442(17)31636-5

DOI: 10.1016/j.energy.2017.09.116

Reference: EGY 11610

To appear in: Energy

Received Date: 25 May 2017

Revised Date: 4 September 2017 Accepted Date: 24 September 2017

Please cite this article as: Qian S, Yuan L, Yu J, Yan G, Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection, *Energy* (2017), doi: 10.1016/j.energy.2017.09.116.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for

materials selection

Suxin Qian*, Lifen Yuan, Jianlin Yu, Gang Yan

Department of Refrigeration and Cryogenic Engineering, School of Power and Energy

Engineering, Xi'an Jiaotong University, Shaanxi, China 710049

*Corresponding Author

Tel: (+86) 29 - 82668738, Fax: (+86) 29 - 82668725, Email: qiansuxin@xjtu.edu.cn

Abstract

Elastocaloric cooling technology is a novel solid-state cooling technology based on the latent heat

associated with martensitic phase transformation in shape memory alloys. The active elastocaloric

regenerator concept was recently demonstrated as a promising approach for this technology.

However, if not properly designed, the large temperature gradient in the active regenerators could

lead to significant degradation of elastocaloric effect and system performance. To address this

challenge, a numerical model was developed in this study with phase transformation kinetics of

shape memory alloys, which is capable to investigate the stress-induced or temperature-induced

phase change phenomena and elastocaloric effect degradation problem. The performance of an

elastocaloric cooling system with a pair of active regenerators is studied in terms of operating

frequency, flow rate, geometric parameters and thermal conductivity of the material. Most

importantly, the condition to avoid eCE degradation was found as the matching principle to guide

material selection for future studies.

Key words: solid-state cooling, elastocaloric cooling, thermoelastic cooling, shape memory

alloys, phase transformation model

Nomenclature

AER

active elastocaloric regenerator

Download English Version:

https://daneshyari.com/en/article/8072657

Download Persian Version:

https://daneshyari.com/article/8072657

<u>Daneshyari.com</u>