Accepted Manuscript

Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell applications

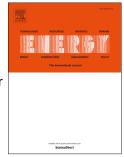
Abdul Hai Alami, Bilal Rajab, Kamilia Aokal

PII: S0360-5442(17)30551-0

DOI: 10.1016/j.energy.2017.03.171

Reference: EGY 10660

To appear in: *Energy*


Received Date: 18 November 2016

Revised Date: 26 March 2017

Accepted Date: 29 March 2017

Please cite this article as: Alami AH, Rajab B, Aokal K, Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell applications, *Energy* (2017), doi: 10.1016/ j.energy.2017.03.171.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Assessment of silver nanowires infused with zinc oxide as a
2	transparent electrode for dye-sensitized solar cell applications
3	
4	Abdul Hai Alami ^{1,2,*} , Bilal Rajab ¹ and Kamilia Aokal ¹
5	
6	¹ Sustainable and Renewable Energy Engineering Department, University of Sharjah, POBox
7	27272, Sharjah, United Arab Emirates
8	² Centre for Advanced Materials Research, University of Sharjah, POBox 27272, Sharjah,
9	United Arab Emirates
10	*Corresponding author, telephone: +971(56) 160-5355, email: aalalami@sharjah.ac.ae, fax:
11	+971(6) 505-3935
12	
13	Abstract
14	This paper presents the results of growing silver nanowire (Ag NW) meshes for utilization as
15	photo-electrodes in dye-sensitized solar cells. These meshes have the advantage of high
16	spectral transmission (> 80%) in the visible-NIR range, and as electrodes, they provide better
17	flexibility compared with traditional glass-based photo-electrodes. Another important feature
18	is the high conductivity (low sheet resistance) compared with their indium-tin oxide (ITO)
19	counterparts. The produced Ag NWs are then filled with a ZnO to act as the electron
20	extraction layer of the solar cell. The evolution of the resulting nanomaterials is monitored by
21	microstructural techniques, such as atomic force microscopy (AFM) and scanning electron
22	microscopy (SEM) while the synthesis of the nanomeshes is done in-solution under
23	controlled conditions. The optical properties of the resulting nanomeshes are determined by
24	spectroscopic measurements within an integrating sphere, while the characteristics of the
25	produced cells are determined by potentiostatic methods and compared to ITO based cells
26	significant increase in performance was achieved.
27	
28	Keywords: Silver nanowires; transparent photo-electrodes; dye-sensitized solar cells

- 31 32

Download English Version:

https://daneshyari.com/en/article/8072732

Download Persian Version:

https://daneshyari.com/article/8072732

Daneshyari.com