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a b s t r a c t

In this research, a new method is proposed to update real-time reliability based on data recorded
by instruments and sensors installed on a system. The method is founded on Bayesian analysis and
subset simulation and is capable of estimating the functional relationship between the real-time failure
probability and the monitoring value. It is shown that as long as the monitoring data can be reasonably
deduced into a single index, this relationship can be obtained; moreover, it can be obtained prior to
the monitoring process. Three examples of civil engineering systems are used to demonstrate the new
method. This new method may be applied to safety monitoring of in-construction civil systems and
monitoring of existing civil systems.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainties are abundant in civil engineering. Major sources
of these uncertainties may include uncertainties in material
properties, model uncertainties and measurement uncertainties.
Reliability analyses [1–4] are the main tool of quantifying these
uncertainties. However, it is sometimes the case that the amount
of uncertainties associated with civil systems is so significant that
the resulting failure probability is unacceptably large. For one of
the examples in this paper (a deep excavation case study), where
the probability distributions of the uncertainties are reasonably
chosen according to the laboratory test results and literature,
the probability that the maximum ground settlement is greater
than 10 cm is as high as 30%. Such a high failure probability
usually reflects insufficient information. Similar issues may exist
in various civil systems if they are subjected to a large amount of
uncertainties. How to reduce the uncertainties in civil systems is
an important research topic.
The goal of this paper is to develop a method of updating

real-time reliability by using the monitoring data obtained from
an instrumented system to reduce uncertainties. Please note that
the goal is to update ‘‘real-time’’ reliability rather than ‘‘future’’
reliability, i.e. to ‘‘monitor’’ the reliability of the system, not to
update the reliability due to future excitation. The applications
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of updating real-time reliability are exemplified by the following
examples:

(a) Monitoring of serviceability: A semiconductor factory may
be vulnerable to small vibrations that can do major damage
during the production process. This damage may be difficult
to detect since it does not induce obvious ‘‘failure’’ but rather
is a serviceability issue. It would be beneficial to monitor this
‘‘serviceability’’ reliability during the production process to
minimize the impacts of the damage.

(b) Early warning: Another benefit for routinely updating real-
time reliability is ‘‘early warning’’, i.e. warnings prior to
possible failures. Before failures occur, there may be ‘‘signs’’
prior to failures. A high updated real-time failure probability
may be a good indicator of the ‘‘signs’’. By routinely updating
real-time reliability, the users of the target system can have a
better grasp of how the reliability changes with time, so that
the issue of an early warning is possible.

(c) Hazard forecasting: In the case that the monitoring data can
be forecasted, the proposed method can be combined with
the forecast results to quickly predict future reliability. For
instance, if the functional relation between failure probability
of a slope and rainfall amount is established by the proposed
method, this functional relation combined with rainfall
forecast results can be used to obtain a quick prediction for
failure probability of the slope during a future rainfall.

In the literature [5–7], updating reliability has been discussed
under a FORM (First-Order Reliability Method) framework. With
minimal amount of computation, the FORM approach works
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reasonablywell for problemswith few uncertainties. However, the
limitation is that when there are lots of uncertainties or multiple
design points, FORMmay not be suitable.
In the case that more computation resource is available, a

more general reliability updating approach based on Bayesian
methods can be employed. To explain the approach, let us divide
the uncertain variable Z into two parts Z = {θ, X}: θ denotes
the uncertain system (structural) parameters, and X denotes the
uncertain excitation. The following equation can be used to update
the reliability:

P (F |ϕ,M) =
∫
P (F |θ,M) f (θ |ϕ,M) dθ (1)

where ϕ denotes the monitoring data; P (F |θ,M) is the failure
probability given the system parameters θ and the chosen model
class M; f (θ |ϕ,M) is the posterior probability density function
(PDF) of θ . Note that P (F |θ,M) can be determined by an ordinary
reliability analysis. This approach was taken by Papadimitriou
et al. [8] to update the reliability by assuming that the problem is
identifiable and the amount of data is large. If the data amount is
insufficient or the problem is unidentifiable, the approachmay not
be applicable.
The integral in (1) can be evaluated through stochastic

simulations: if samples
{
θ (i) : i = 1, . . . ,N

}
can be drawn from

the posterior PDF f (θ |ϕ,M), according to the Law of Large
Number:

P (F |ϕ,M) ≈
1
N

N∑
i=1

P
(
F |θ (i),M

)
. (2)

Compared to the FORM approach, this approach is more general
since it is applicable for general problems, even thosewithmultiple
design points, as long as the conditional samples can be drawn
from f (θ |ϕ,M). However, there are, at least, two challenges in
this approach: (a) drawing samples from f (θ |ϕ,M) can be highly
non-trivial, especially when the θ dimension is high; (b) for each
sample of f (θ |ϕ,M), a reliability analysis is required to determine
P
(
F |θ (i),M

)
. This implies that in order to evaluate P (F |ϕ,M),

repetitive reliability analyses may be needed.
One exception is described in Ching and Beck [9], where

they proposed a method based on ISEE [10] to update the real-
time reliability of linear systems. Their approach does not have
the aforementioned constraints, but it can be only applied to
linear systems with Gaussian uncertainties. For general problems,
Cheung and Beck [11] recently proposed an interesting method of
updating the reliability that bypasses the second challenge. The
idea is to implement the following equation:

P (F |ϕ,M) =
f (ϕ|F ,M) P (F |M)

f (ϕ|F ,M) P (F |M)+ f
(
ϕ|F C ,M

)
[1− P (F |M)]

(3)

where F C is the non-failure event; the two normalizing constants
f (ϕ|F ,M) and f

(
ϕ|F C ,M

)
can be directly estimated with more

advanced Bayesian methods, e.g. the transitional Markov chain
Monte Carlo method proposed by Ching and Chen [12]. Hence
the reliability can be updated without further repetitive reliability
analyses. This approach is quite general but still requires drawing
samples from f (θ |ϕ,M). To the authors’ best knowledge, amethod
that completely resolves the two challenges is not yet available.
The intention of this paper is to provide a partial solution to the

two challenges: itwill be shown that the aforementioned two chal-
lenges can both be bypassed if the monitoring data is a scalar. In
particular, an approach based on subset simulation (SubSim) [13–
15] will be developed so that updating the reliability no longer
requires drawing samples from f (θ |ϕ,M) but from f (ϕ|F ,M);
also, the repetitive reliability analyses are not necessary.When the
monitoring data is high dimensional, the proposed method may
be not applicable; however, whenever it is possible to effectively

condense the high-dimensional data into a scalar, the method can
still be applied at the cost of losing information.
The structure of the paper is as follows. In Section 2, the problem

of updating reliability is formally defined. In Section 3, a simple
procedure for reliability updating via Monte Carlo simulation
(MCS) is presented,while amore efficientmethodbased on SubSim
is presented in Section 4. In Section 5, examples are used to
demonstrate the new approach, and in Section 6, discussions and
a conclusion will be given.

2. Problem definition

The goal of regular reliability analyses is to estimate the failure
probability given the probability distribution of the uncertainties
in the target system and the mathematical modelM of the system,
i.e. to compute P (F |M), where F is the failure event. When new
information ϕ is available, it is essential to incorporate it to reduce
the uncertainties (i.e. update the reliability). This is especially the
case if the new information ϕ is the direct measurement on the
target system: thismeasurement directly reflects the systemstatus
and may contain much information. Therefore, it is desirable to
develop a methodology to update the reliability based on these
measurements, i.e. to compute P (F |ϕ,M). In this paper, ϕ is
assumed to be a scalar. For vectorial ϕ, the problem of updating
P (F |ϕ,M) is much more difficult, so it is left as future research.
A naïve way of achieving the aforementioned task is as follows:

employ brute-force MCS to draw many samples of the uncertain
variables; each sample corresponds to amonitoring value. Suppose
that there arem samples whose monitoring values are identical to
the actual monitoring value, and that among them samples, there
are n samples satisfying the prescribed failure condition (called
failure samples). The failure probability can therefore be updated
as n/m. However, this approach is infeasible in practice since the
chance that the sampledmonitoring value is equal to the actual one
is zero, so obtaining suchm samples requires an infinite amount of
computational time.
For convenience of discussion, (3) is re-written in the following

form:

P (F |ϕ,M) =
f (ϕ|F ,M) P (F |M)

f (ϕ|F ,M) P (F |M)+ f
(
ϕ|F C ,M

)
[1− P (F |M)]

(4)

where f (ϕ|F ,M) and f
(
ϕ|F C ,M

)
are the PDFs of the moni-

toring value conditioned on the failure and non-failure events,
respectively; P (F |M) is the failure probability without the moni-
toring information, called the prior failure probability. For our pur-
pose, the goal is to find P (F |ϕ,M). According to (4), if f (ϕ|F ,M),
f
(
ϕ|F C ,M

)
and P (F |M) are all available, P (F |ϕ,M) can be read-

ily obtained. Therefore, it is not necessary to draw samples from
f (θ |ϕ,M) nor to conduct repetitive reliability analyses.
In the following two sections, the detailed descriptions for

estimating f (ϕ|F ,M), f
(
ϕ|F C ,M

)
and P (F |M) by using MCS and

SubSim, respectively, will be given. For notational simplicity, the
symbol M in the conditions will be dropped in all the following
discussions. Readers should keep in mind that all results are
conditioned on the assumed mathematical modelM .

3. Estimation of P(F |ϕ) via MCS

An approach of estimating P (F |ϕ) based on MCS is presented
in this section. This approach is inefficient when P (F |ϕ) is small.
However, the MCS approach is worth mentioning because of its
simplicity. A more technically involving technique that is efficient
for small P (F |ϕ) based on SubSim will be presented in the next
section.
Let Z denote the uncertain variables of the target system,

and let R(Z) denotes the limit-state function that defines failure
event F , i.e. a failure event is defined as R(Z) ≥ 1. The MCS
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