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a b s t r a c t

The correlations between wind power generation in different countries are important for quantifying the
reductions in variability when electrically interconnecting the countries. Hourly, country-wise time se-
ries of wind power output were generated for all European countries using MERRA reanalysis data. By
comparing the model output with actual measurements, it is shown that this approach is appropriate for
studying correlations. In order to deepen the analysis, correlation coefficients were not only computed
for these time series, but also for the one hour step changes and for band-pass filtered data. The general
pattern is that correlations reduce with separation distance in an exponential fashion and are highest for
the long-term components (T > 4 months) and lowest for step changes and short-term components
(T < 2 days). Interesting deviations from this pattern however exist. When comparing to earlier results
for individual farms, the exponential decay is slower, in particular for step changes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The electric output fromwind farms varies over a wide range of
time scales, from sub-second fluctuations to variations over de-
cades. The intermittency in the net load
(Load � Wind � Photovoltaics) has to be balanced by other energy
sources such as hydro power and gas turbines. Different time scales
of wind power variability pose different challenges for the power
system. For large offshore farms, the variations from minute to
minute can be substantial and require flexibility in the (local) grid
[1]. A lot of attention has been focused on the slightly longer var-
iations on a time-scale of around one and up to a few hours, which
can pose a significant challenge [2]. In particular, the step changes
in aggregated output from hour to hour are commonly analysed in
variability and integration studies [3e5]. Seasonal variations on the
other hand requires large reservoirs if hydro power is the primary
source for balancing.

The focus on variability in the 1e6 h time scale is not surprising
since many power systems to a large degree rely on thermal gen-
eration for balancing wind power fluctuations. These plants
generally require a few hours to ramp up their generation to the

desired output. For hydro dominated systems (e.g. the Nordic sys-
tem), it is however not obvious that this time scale of wind power
variability is the most difficult to handle. Discussions with the
Swedish power company Vattenfall, a major hydro power operator,
actually suggest that variability on the synoptic time scale (a few
days) could be more problematic to manage if wind power capacity
was to be significantly increased. The reasons for this are primarily
increased net load forecast errors and environmental regulations in
how the hydro power plants are allowed to be operated.

Many possible paths are available to alleviate the problems
related to the intermittency of wind power, including e.g. energy
storage and demand side response. Another option is to reduce the
variability itself by interconnecting countries or regions [6]. The
linear correlation between wind power generation in different re-
gions gives us information on the advantage of increasing trans-
mission capacity between power systems in order to reduce the
combined variability. Regions with a low or even negative corre-
lation benefit most from being more tightly interconnected.

The aim of this paper is to quantify the correlations between
wind power generation in different countries in Europe. To our
knowledge, it is the first time that this type of analysis is performed
in such a systematic way, i.e. not only for a handful of countries or
regions. We also want to examine whether the exponential model
for correlation versus separation distance commonly used for farm
output (see Section 2.1) is appropriate also for country-wise
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generation. To get a more complete picture, correlation coefficients
were studied for hourly data and one hour step changes as well as
for filtered data. The filtering, described in Section 2.4, is useful
since it allows us to isolate and study particular frequency bands,
e.g. the synoptic time scale. Since sufficiently long wind power time
series were not available for many countries, the generation was
modelled from meteorological reanalysis data. In order to gain
confidence for this methodology, the model output was first
compared to measurements from three different countries. For the
final analysis, the anticipated fleet of wind turbines (WTs) as of year
2020 and modelled time series spanning from 2005 to 2012 (eight
years) were used. Throughout the paper, Pearson's linear correla-
tions are considered. The differences compared to Spearman's rank
correlations are however generally within a few percentage points.

This paper is structured as follows: Section 2 gives a theoretical
background and describes the methods used. Section 3 begins with
a comparison of the output from the model with actual historical
generation. Subsequently the results in form of correlation co-
efficients are given. The paper concludes with a discussion and
conclusions in Sections 4e5. Additional figures and tables as well as
a Matlab file with hourly generation for each country are provided
as supplementary material.

2. Theory and methods

2.1. Benefits of interconnection

By combining wind power output from several countries, the
variance can be lower than for a similar installed capacity in only
one country. Let us consider the weighted combination of wind
power from N countries:

Ptot ¼
XN

i¼1

wiPi; (1)

where wi is the weight and Pi is the generation time series for
country i. The variance of Ptot can be computed as

VarðPtotÞ ¼
XN

i¼1

XN

j¼1

wiwjsisjrij; (2)

where sx is the standard deviation for the generation in country x
and rij is the correlation between generation in countries i and j.
The importance of r is obvious from the equation. Consider for
instance the combination of two equally weighted (w ¼ 0.5) time
series with unity standard deviations. With r of �1, 0 and 1, the
variance of the combined outputs become 0, 0.5 and 1 respectively.
In other words, as long as r < 1, interconnection is beneficial in
terms of lowering the combined variability.

It is well known that the outputs fromwind farms are correlated
and that, in general, r decreases with longer separation distances
[7]. A commonly used correlation model is given by

rðdÞ ¼ a$e�d=D; (3)

where d is the distance between the farms and D is a parameter
determining how fast r decreases with distance. The separation
distances were calculated between themass centres of the installed
wind power capacity for each country using the Haversine formula
[8]. The a parameter is sometimes fixed to unity and sometimes
allowed to take other values as well. A review of models and cor-
responding parameter values can be found in Martin et al. [7].
Almost all of the works cited therein present models for correlation
between output of individual farms or wind speed measurements.

The same analysis can however be performed with nationally or
regionally aggregated wind power time series [5,9]. It can also be
noted that the correlation of wind power forecast errors has a
similar dependence on distance [10,11], although r here decays
considerably faster.

2.2. Study area

Several of the countries in Europe are very small and/or have
negligible installed wind power capacity. In order to give a clearer
presentation of the results, a few very small states were omitted
from the analysis and some of the countries were grouped together,
see the bulleted list below and Fig. 1. For the remainder of this
paper, when referring to a “country”, it could be an actual country
or a region in the bulleted list.

� Austria and Switzerland (SZ)
� The Baltic States (Estonia, Latvia and Lithuania)
� Benelux (Belgium, the Netherlands and Luxembourg)
� Czech Republic and Slovakia (LO)
� Greece and (the whole of) Cyprus (CY)
� Western Balkans (Bosnia & Herzegovina, Macedonia, Serbia,
Croatia, Montenegro and Albania) and Slovenia (SI)

� Romania and Moldova (MD)

2.3. Model of hourly generation

In an earlier work [12], the MERRA reanalysis dataset [13] was
used for modelling hourly, aggregated wind power generation. A
reanalysis uses an unchanging atmospheric model and analysis
system to produce a gridded and complete dataset of relatively
consistent quality (unlike operational models which improve over
time). MERRA, the Modern Era Retrospective-Analysis for Research
and Applications, is produced by NASA and covers the period
1979e2016. For wind speed, temperature, air pressure and other
relevant variables, the temporal and spatial resolutions are one
hour and 1=2+ � 2=3+ respectively. The method in Ref. [12] proved
to be successful; when validating with data from the Swedish
transmission system operator (TSO), the root mean square error
(RMSE) was 3.8% and the correlation coefficient was 0.98. The five
basic steps of the method are:

1. Start with MERRA time series and information on each WT.
2. Calculate the hourly wind vector at turbine hub height.
3. Calculate hourly generation for each WT, including losses of

different kinds.
4. Aggregate hourly generation for the studied area.
5. Use bias corrections to improve the results.

The abovementioned model requires e.g. coordinates, installed
capacity, rotor diameter and estimated annual energy yield for all
individual WTs. In the present study, much less details were
available on existingWTs for most of the countries and therefore a
simplified approach was taken. Average capacity factors (CFs) for
onshore farms as of 2020 were estimated for each country (see
Section 2.5) and all offshore farms were assumed to have a ca-
pacity factor of 0.43. Ten year long time series were computed for
each MERRA grid point using the same parameter settings as in
Ref. [14] except that direction dependent losses were not
considered and no seasonal/diurnal bias correction was per-
formed. The time series were finally weighted by the assumed
distribution of farms (see Section 2.5) to give country-wise, hourly
generation.
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