Energy 112 (2016) 28-42

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Model of a thermal driven volumetric pump for energy harvesting in an underwater glider

INEGI, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal

ARTICLE INFO

Article history: Received 14 May 2015 Received in revised form 2 June 2016 Accepted 3 June 2016

Keywords: Underwater gliders Renewable energy Energy efficiency Thermodynamic cycle Hydraulic systems Phase change materials

ABSTRACT

Underwater gliders are one of the most promising approaches to achieve an increase of human presence in the oceans. Among existing solutions, thermal driven gliders present long range and endurance capabilities, offering the possibility of remaining years beneath water collecting and transmitting data to shore. A key component in thermal gliders lies in the process used to collect ocean's thermal energy. In this paper a new quasi-static model of a thermal driven volumetric pump, for use in underwater gliders, is presented. The study also encompasses an analysis of the influence different hydraulic system parameters have on the thermodynamic cycle efficiency. Finally, the paper proposes a simple dynamic model of a heat exchanger that uses commercially available materials for the Phase Change Material (PCM) container. Simulation results validate the models developed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In order to widen the knowledge on Earth's oceans and its underlying resources, a more persistent human presence on and under water is required. However, common techniques based on ships or buoys are currently expensive and do not allow the acquisition of data with an adequate spatial and temporal resolution. It is therefore vital to develop compact, smart and low cost devices that allow the creation of constantly monitoring networks. This scenario has led, in recent years, to an exponential increase in the number of studies involving Autonomous Underwater Vehicles (AUV) [1]. Furthermore, this trend has pushed AUV technology to evolve from concept demonstrators to commercially available products [1].

One particularly well suited type of AUV for collecting ocean data is the underwater glider. This AUV type uses buoyancy changes as propeller mean, therefore leading to very low energy consumptions. Furthermore, given its natural sawtooth trajectory profile, it allows collecting data along the water column, a fact of major importance regarding biological data acquisition [2].

Gliders were originally proposed and developed as inexpensive remote sensing systems for oceanographic purposes and have

* Corresponding author. E-mail address: jpbrfc@fe.up.pt (J. Falcão Carneiro). Data gathered by these vehicles can be used in data assimilation procedures and to calibrate circulation models, e.g. Refs. [4,5]. The energy expended by these vehicles is mostly used in buoyancy changes, and can reach as much as 80% [3] in electrically powered pumping procedures. Presently there are several proposals to tackle the problem, some aim to use the waste heat from internal systems [6], while others aim to completely remove the need for significant pre-installed energy and are based on the conversion of environmental energy, like the use of the ocean thermal gradient (OTG) [7]. There are also other types of vehicles using environmental energy like solar energy [8] or solar energy combined with a wave energy conversion mechanism [9]. The use of solar [8] or wave powered [9] devices in this context suffers a major drawback, as these devices must spend most of their time at sea surface. This means that a vehicle, in the absence of survival maneuvering capability, which has been the case for most, will be subject to storms, strong waves and winds which may lead to decreased operational life. On the contrary, collecting energy from the sea temperature differences provides a safer travelling environment since none of the above mentioned natural activity is present underwater. Within the context of autonomous vehicles, the ocean's thermal energy is typically collected by converting the volumetric expansion, or contraction, that some type of materials (Phase Change Materials, PCM) present when changing from solid to liquid phase and vice

recently also been considered for sovereignty upholding tasks [3].

(°) _{SL}	variable at solidus line
(°) _{LL}	variable at liquidus line
Снг	specific heat of the heat exchanger
CDCM	represents the specific heat capacity of the PCM
Cur	thermal canacity of the heat exchanger
C _{HE}	thermal capacity of the PCM
CPCM	
$C_{\text{PCM}}\mathbf{S}_{i,j}$	average value of the PCM heat capacity when travelling
	from S _i to S _j
Cp	specific heat at constant pressure
C _{p PCM.s}	PCM specific heat at constant pressure for solid phase
C _p PCM.I	PCM specific heat at constant pressure for liquid phase
C_{v}	specific heat at constant volume
Cy PCMs	PCM specific heat at constant volume for solid phase
	PCM specific heat at constant volume for liquid phase
CV_{i}	check valve i
Ev.	Young modulus of the heat exchanger material
L'HE K	thermal conductivity of the DCM
К 1.	auviliary variable thermal conductivity of the DCM at
κ _i	auxiliary variable thermal conductivity of the PCIVI at
,	either solidus or liquidus lines
κ _L	thermal conductivity of the PCM in the liquid phase
Ks	thermal conductivity of the PCM in the solid phase
k_{LL}	thermal conductivity of the PCM at liquidus line
k _{SL}	thermal conductivity of the PCM at solidus line
Н	enthalpy of the PCM
h	specific enthalpy of the PCM
h _I	auxiliary variable: enthalpy at either solidus or
	liquidus lines
hu	enthalpy at liquidus line
hsi	enthalpy at solidus line
Lur	length of the heat exchanger tubes
Mur	mass of the heat exchanger
MDGM	mass of the PCM
n ⁱ	No pressure at state i
PN2 nmax	thermodynamic cycle maximum pressure of the PCM
P _{N2}	pressure at V
Poil-PCM	pressure at $V_{0il-PCM}$
Poil–N2	pressure at V _{oil-N2}
PPCM mmax	PCM pressure
P_{PCM}^{max}	maximum PCW pressure
PP	auxiliary variable defining the phase of the PCM before
	the transition phase
p_{t}	tank pressure
Q_f	PCM the heat of fusion at atmospheric pressure
Q _{PCM_in}	heat retrieved from the surrounding water by the heat
	exchanger
$Q_{\text{PCM}}\mathbf{s}_{i,j}$	heat exchanged by the PCM with the environment
	when travelling from S_i to S_j
r _{ext HE}	external radius of the heat exchanger cylinder
r _{inter HE}	intermediate radius of the heat exchanger cylinder
$r_{\rm int \ HF}$	internal radius of the heat exchanger cylinder
r _{ext PCM}	external radius of the PCM cylinder
rinter DCM	intermediate radius of the PCM cylinder
rint DCM	internal radius of the PCM cylinder
Rupo ur	heat transfer convective resistance between water and
TH20_HE	heat exchanger
R	total heat transfer conductive resistance of the UF
D	heat transfer conductive resistance between water and
NHE_EXT	זרמו נומוזורו נטוונונווער ובזוזומוונד שבושפרוו שמופן מווע ד
D	IHE heat transfor convective resistor of hot ways T and
κ _{HE_INT}	heat transfer convective resistance between I_{HE} and
D	the outer layer of the PCM
K _{PCM}	total neat transfer conductive resistance of the PCM
<i>R</i> cond	conductive heat transfer resistance

Notation

R _{conv}	convective heat transfer resistance
S	set of possible states the PCM experiences
S	state of the PCM
<u>S</u> .	state <i>i</i> of the PCM
S*	notable state <i>i</i> of the PCM
$(S)^{-1}$	provious state of the PCM on the state trajectory
(3)	previous state of the PCW of the state trajectory
c	
$S_{i,j}$	set of states the PCM undergoes when travelling from
	S_i to S_j
S _{inter}	generic intermediate state of the PCM between S_i and
	S_j
v_{PCM}	PCM specific volume of the PCM
V_{N2}^{0}	volume of the accumulator
V_{N2}^{min}	volume of gas at the accumulator when $p_{N2} = p_{N2}^{max}$
V _{oil-PCM}	volume of oil between the PCM, CV_1 and CV_2
V ⁱ	$V_{oil-PCM}$ at state i
Voil_N2	volume of oil between CV ₁ and the accumulator
011 112	bladder
VDCM	volume of the PCM
Vc	fixed volume comprising V _{et} per and V _{per}
t	thickness of the heat exchanger tube
t	minimum thickness of the heat exchanger tube
^L MTS	according to the MTS criteria
	according to the MIS chiefla
LCBC	minimum thickness of the heat exchanger tube
-	according to the CBC criteria
I_c	lower ocean temperature
$T_{\rm F,L}$	temperature at which the PCM melting process ends.
T _{F,S}	the temperature at which the PCM melting process
	starts
$T_{\rm F,M}$	temperature at which the middle stage of the PCM
	melting process is reached
$T_{\rm h}$	ocean temperature on surface
$T_{\rm HE}$	heat exchanger temperature at an intermediate radius
T_I	auxiliary variable: temperature at either solidus or
	liquidus lines
T_{II}	temperature of the PCM at liquidus line
T_{II}^{i}	temperature of the PCM at liquidus line when the PCM
LL	is at state i
TPCM	PCM temperature (at a radius corresponding to half the
I CIVI	total volume of the PCM cylinder)
T^i_{-}	PCM temperature at state <i>i</i>
T _{CI}	temperature of the PCM at solidus line
T_{i}^{i}	temperature of the PCM at solidus line when the PCM
¹ SL	is at state <i>i</i>
П	internal energy of the PCM
0	specific internal operate of the DCM
u 	vertical velocity of the glider
v _v	vertical velocity of the glider
2	ocean water depth
vv _{N2}	work performed during the cycle over the gas
α	thermal volumetric expansion coefficient of the PCM
β_{e_oil}	effective isothermal bulk modulus of oil
Δk	absolute difference between the thermal conductivity
	of the PCM at solidus and liquidus lines
ΔT_t	absolute difference between T_{SL} and T_{LL}
θ	convective heat transfer coefficient between sea water
	and heat exchanger
κ	compressibility coefficient of the PCM
ϕ	external diameter of the heat exchanger tubes
η	efficiency of the cycle
η_{max}	maximum cycle efficiency
$\eta_{\rm max}$ c	maximum efficiency of the thermal driven volumetric
/max_t	pump (Carnot corollary)

Download English Version:

https://daneshyari.com/en/article/8072926

Download Persian Version:

https://daneshyari.com/article/8072926

Daneshyari.com