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Abstract

A methodology is presented for simulation of strongly non-Gaussian random fields. It involves an iterative scheme that produces sample
functions that match a prescribed non-Gaussian marginal distribution and a prescribed Spectral Density Function (SDF). The simulated field
possesses all the properties of translation fields. The methodology also determines the SDF of an underlying Gaussian field according to translation
field theory. This is the latest development in a class of simulation algorithms that are presented and critically reviewed. Several numerical
examples are provided demonstrating the capabilities of the methodology, comparing it with three previous algorithms, and determining the limits
of its applicability. Compared to earlier algorithms, the proposed methodology provides increased accuracy at a fraction of the computational cost.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The only universal method available to solve accurately
any kind of stochastic mechanics problem is Monte Carlo
Simulation (MCS). The only drawback of MCS is its
computational cost, but lately the increased power of computers
and the proliferation of clusters for parallel computing has
strongly attenuated this issue (note also that the parallel
implementation of MCS is generally straightforward).

One of the key parts in the implementation of the MCS
methodology is the accurate and efficient generation of samples
of the random processes and fields involved in the problem
at hand. In stochastic mechanics problems, these random
quantities can be, for example, random excitations and/or
random material and geometric properties. To obtain accurate
solutions to such problems, it is important that the generated
sample functions of these processes and fields match the
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prescribed (target) probabilistic characteristics as closely as
possible.

The most commonly used probability distribution to model
these stochastic processes and fields is certainly the Gaussian.
This choice is made mostly for convenience rather than
for mathematical or physical reasons. For example, various
material properties are bounded for physical reasons (e.g. the
elastic modulus, the yield stress, the density, and several other
properties cannot become negative), while excitations like wind
pressure fluctuations and ocean wave heights are known to
exhibit strong non-Gaussian characteristics. For these reasons,
several methodologies have been proposed for simulating
non-Gaussian stochastic processes and fields according to a
prescribed Spectral Density Function (SDF) and a prescribed
marginal Probability Distribution Function (PDF). A few
representative methodologies along these lines are mentioned
here in chronological order: Yamazaki and Shinozuka [1],
Grigoriu [2,3], Gurley et al. [4], Popescu et al. [5], Gurley
and Kareem [6], Deodatis and Micaletti [7], Puig et al. [8],
Sakamoto and Ghanem [9,10], Graham et al. [11], Shi and
Deodatis [12–14], Cope et al. [15], Li et al. [16].

This paper reviews critically three of the above methodolo-
gies [1,7,12] that have certain similarities and can be considered
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to constitute a class of algorithms. They are all based on the
concept of translation fields (Grigoriu [2]) and involve differ-
ent iterative schemes that aim to generate non-Gaussian sample
functions that reflect both the prescribed non-Gaussian PDF and
SDF. An important part of these methodologies is to determine
the SDF of an underlying Gaussian field according to transla-
tion field theory. The contribution of this work is to introduce
the latest development in this class of algorithms, in the form
of a methodology that provides increased accuracy and com-
putational efficiency in matching the SDF and the PDF of the
non-Gaussian field (compared to the three earlier versions).

In the remainder of this paper, only random fields will be
considered for simplicity. The application to random processes
is obviously trivial.

2. Critical review of previous research work

2.1. Spectral Representation Method for Gaussian fields

The Spectral Representation Method (SRM) for simulation
of Gaussian stochastic processes and fields has been introduced
by Shinozuka and Jan in 1972 [17]. Many further developments
have been proposed over the years, which are reviewed and
summarized in a series of papers by Shinozuka and Deodatis
[18–20].

There are two alternative SRM-based algorithms in the
literature (e.g. [18,21]). The one that will be used in this paper
simulates the Gaussian stochastic field g(x) by the following
series as N → ∞:

g(x) = 2
N−1∑
n=0

√
Sgg(κn)∆κ cos(κn x + φn) (1)

where

∆κ =
κu

N
(2)

κn = n ∆κ, n = 0, 1, . . . , N − 1 (3)

and κu is the upper cutoff wave number, beyond which the SDF
Sgg(κ) can be assumed to be zero for mathematical or physical
reasons. The φn’s are independent random phase angles,
uniformly distributed in the interval [0, 2π ]. The simulated
stochastic field is periodic with period:

L =
2π

∆κ
. (4)

Generated sample functions are Gaussian only asymptotically
due to the central limit theorem. A value of N = 256 is
used in this paper with reasonably accurate results regarding
Gaussianity, following an extensive numerical investigation.
Generated sample functions have also a strong ergodic property
in the mean and autocorrelation when the length of the sample
is a multiple of the period L or tends to infinity [18,21]. It is
worthwhile noting that this ergodic property is lost when the
Gaussian sample function is mapped to a non-Gaussian one
according to the classic translation process transformation.

2.2. Spectral Representation Method for non-Gaussian fields:
Yamazaki and Shinozuka (1988)

In 1988 Yamazaki and Shinozuka [1] proposed an SRM-
based iterative methodology to simulate a non-Gaussian
stochastic field f (x) according to a target non-Gaussian SDF,
ST

f f (κ), and a target non-Gaussian marginal CDF,F f , with zero

mean and variance σ 2
f compatible with that of the target SDF.

Their methodology is based on Grigoriu’s translation process
theory [22,2].

At the first iterative step, the unknown SDF of the underlying
Gaussian field g(x), Sgg(κ), is set equal to ST

f f (κ). Then, a
Gaussian sample function g(x) is generated by means of the
SRM. The classic translation process transformation [22,2] is
then used to map the homogeneous Gaussian sample into a
homogeneous non-Gaussian one with the prescribed marginal
PDF:

f (x) = F−1
f

{
Fg [g(x)]

}
(5)

where F−1
f is the inverse target non-Gaussian Cumulative

Distribution Function (CDF) and Fg is the Gaussian CDF with
zero mean and variance σ 2

g equal to σ 2
f . Although sample

function f (x) reflects the prescribed non-Gaussian marginal
CDF, F f , its SDF is not matching, in general, the prescribed

SDF, ST
f f (κ), because of the nonlinearity of the transformation

in Eq. (5).
The basic idea of the Yamazaki and Shinozuka algorithm is

to update iteratively the SDF of the underlying Gaussian field
until the SDF of the non-Gaussian sample function converges
to the target. This is expressed as:

S( j+1)
gg (κ) =

S( j)
gg (κ)

S( j)
f f (κ)

ST
f f (κ) (6)

where S( j+1)
gg (κ) and S( j)

gg (κ) denote the SDF’s of the
underlying Gaussian field at the ( j + 1)th and j th iterations,
respectively, and S( j)

f f (κ) is the SDF of the non-Gaussian sample
function at the j th iteration computed from:

S( j)
f f (κ) =

1
2π L

∣∣∣∣∫ L

0
f ( j)(x) exp(−iκx) dx

∣∣∣∣2

. (7)

Over the years since its introduction in 1988, it has become
clear that the Yamazaki and Shinozuka algorithm cannot
match accurately the prescribed non-Gaussian marginal CDF
when it deviates significantly from the Gaussian. Deodatis
and Micaletti [7] have identified and explained in detail the
theoretical reasons for this problem that are briefly summarized
here.

The first reason is that the underlying “Gaussian” field
diverges from Gaussianity as the iterations proceed. This is due
to the fact that the updating formula in Eq. (6) makes the SDF
Sgg(κ) of the underlying Gaussian field a function of all the

φn’s in Eq. (1) (since S( j)
f f (κ) is a function of all the φn’s as

can be seen from Eq. (7)). Once Sgg(κ) becomes a function of
all the φn’s, each term in the summation in Eq. (1) becomes a
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