
Probabilistic Engineering Mechanics 23 (2008) 438–443
www.elsevier.com/locate/probengmech

The effect of fatigue-induced crack propagation on the stochastic dynamics
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Abstract

Reliability design of various structures such as ships, offshore platforms, aircrafts, buildings is incomplete without considering fatigue-induced
crack propagation effects that may lead to system failure. In order to carry out dynamic analysis of such systems, one needs an appropriate dynamic
model along with a tool for statistical analysis of the crack propagation. This paper aims to contribute to the ongoing research of stochastic
dynamics coupled with simultaneous degradation of the system properties, especially stiffness degradation, caused by cracks in structural elements.
The latter issue is important for structural safety.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic loading of mechanical and structural systems,
including randomly varying excitation, causes irreversible
changes in the material structure and results in decreasing
of the ability of a system to carry intended loading. Such a
degradation of system properties has a direct effect on its safety
and reliability. Damage caused by vibration, which manifests
itself primarily in stiffness degradation of the components in
metallic structures, is mainly due to accumulation of fatigue or,
more specifically, due to growth of fatigue cracks which takes
place in vibrating structural elements.

The analysis of random vibration problems coupled with
degradation meets with serious difficulties. Due to this fact
it is not easy to construct an analytical and general method
for the solution of such problems. Previously, the latter issues
were studied in the literature under simplifying assumptions
enabling semi-analytical solutions, see e.g. [1,2]. For a general
overview of vibration of cracked structures with a ‘frozen’
damage configuration, cf. [3].
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The goal of the present paper is to apply purely numerical
techniques, which are general and capable of tackling various
system nonlinearities, dynamically evolving degradation along
with multi-dimensionality. It appears that numerical path
integration [4,5] offers an accurate and efficient solution for
three-dimensional random dynamical system with stiffness
degradation, which is the topic of the present paper.

2. Stiffness degradation due to fatigue: Governing equa-
tions

In this paper we consider a vibrating system, consisting of a
thin rectangular plate (cf. Fig. 1), with a center crack orthogonal
to the external Gaussian white noise excitation w(t) [1].

The plate itself is considered homogeneously elastic and
massless, supporting an ideally stiff heavy mass M at its end.
The actual (two-sided) crack size is denoted by 2a. However,
throughout the paper we shall refer to the crack size by using
the one-sided crack size parameter a. During vibration the crack
grows in the straight initial direction. Let us denote by k(a) the
stiffness dependence on the crack size a, which is assumed to
have an initial value a0. The governing equation has the form

M ÿ(t)+ Gd(y(t), ẏ(t))ẏ(t)+ k(a)y(t) = w(t), (1)
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Fig. 1. Schematic illustration of dynamic system.

where w(t) is a random process assumed to be a stationary
Gaussian white noise. The response process y(t) characterizes
the displacement; M is the mass and Gd is a nonlinear function
characterizing the damping in the system. Dividing both sides
of Eq. (1) by M and introducing new non-dimensional variables
Y = y/σy , A = a/b, τ = ω0t where σy denotes the standard
deviation of the stationary response of the system (1) without
degradation (i.e. when k(a0)/M = ω2

0), b is the plate width, we
obtain a dimensionless form of Eq. (1)

Ÿ (τ )+ G(Y (τ ), Ẏ (τ ))Ẏ (τ )+ ω2(A(τ ))Y (τ ) = W (τ ), (2)

with initial conditions,

Y (τ0) = Y0, Ẏ (τ0) = Y1,0, A(τ0) = A0 = a0/b, (3)

where Y (τ ) is an unknown response process; A(τ ) is the fatigue
crack size; G(Y (τ ), Ẏ (τ )) = (ω0 M)−1Gd(σyY (τ ), ω0σy Ẏ (τ ))
again characterizes damping, ω(A)2 = k(bA)/k(bA0) denotes
the monotonically decreasing dependence of the (normalized)
stiffness (or undamped natural frequency) on the crack size;
W (τ ) is a rescaled white noise. Y0, Y1,0, A0 are given initial
values (or random variables) of the response and degradation.
Evolution of the fatigue crack size A is commonly described by
the Paris–Erdogan equation

dA

dN
= C(1K )m (4)

where 1K is the stress intensity factor range, N is the cycle
number, C and m are empirical constants. As is known, the
stress intensity factor K can be interpreted as a quantity which
characterizes the stress distribution around the crack tip. In
general, it can be expressed in the form,

K = β(A)S
√
π A, (5)

where S describes the far-field stress resulting from the
response process Y and β(A) accounts for the geometry of the
crack and the specimen.

We now define a degradation measure which is similar to the
one introduced in [1]. It is based on a nonlinear transformation
ψ(A) of A defined as

ψ(A) =

∫ A

A∗

dx

ω(x)β(x)m(
√
πx)m

, (6)

where A∗ is a suitably defined initial crack size at some time
τ∗. For example, A∗ could represent a detection level crack

size. For the dynamic structure considered, there will also be
a critical crack length A∗

≤ b/2, which may be considered as a
failure limit state. Let ψ∗

= ψ(A∗), and define the degradation
measure D as

D =
ψ(A)

ψ∗
, D ∈ [0, 1]. (7)

Note that for practical reasons the starting time of our analysis
is τ0 > τ∗, chosen so that A0 = A(τ0) > A∗. That is, instead of
starting with zero damage, an initial value D0 > 0 will be used.

For the subsequent modelling, a differential equation for the
time evolution of D is needed. To derive this equation, the
number of cycles N (τ ) in the time interval (τ0, τ ) as a function
of τ is required. This relation can be expressed as

N (τ ) =

∫ τ

τ0

ω(A(s))

2π
ds, (8)

which leads to dN (τ )/dτ = ω(A(τ ))/2π . The differential
equation we seek is now obtained as follows,

dD

dτ
=

1
ψ∗

dψ(A)
dA

dA

dN

dN

dτ
=

C

2πψ∗
(1SY )

m, (9)

where 1SY is the stress range generated by the response
process Y (τ ).

It is assumed that the degradation starts when the response
process Y (τ ) is in its stationary state and that the damping
in Eq. (2) is low. This is expressed by the requirement that
ζ = E[G(Y, Ẏ )]/(2ω(A)) � 1. This will ensure that the
response can be characterized as a narrow-band process in the
sense that the envelope process

H(τ ) =

√
Y (τ )2 + Ẏ (τ )2/ω(A)2, (10)

serves to quantify accurately the amplitude process associated
with Y (τ ).

Denoting the response range within a response cycle by1Y ,
that is, 1Y = Ymax − Ymin, it is assumed that 1SY = c1Y ,
where the constant c is determined by the dynamical system
under consideration. We now make the approximation that
1Y equals two times the amplitude of Y (τ ), as given by the
envelope H(τ ) of Y (τ ), i.e. 1Y = 2H . Therefore the stress
range 1SY in the response cycle with amplitude H is given by

1SY = 2cH. (11)

Eqs. (9) and (11) give the result

dD

dτ
= C1 Hm (12)

where C1 is a suitable constant. C1 ∼ 1/TD � 1/T since
the degradation process time scale TD is much larger than the
response period (or the dynamical system time scale)

T =
2π
ω(A)

(13)

Since we shift from A to D by Eq. (7), the stiffness ω2(A) in
Eq. (2) is replaced by some function q(D). Thus one arrives at
the following dynamic equation
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