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Abstract

In this paper an algorithm for the probabilistic analysis of concrete structures is proposed which considers material uncertainties and failure
due to cracking. The fluctuations of the material parameters are modeled by means of random fields and the cracking process is represented
by a discrete approach using a coupled meshless and finite element discretization. In order to analyze the complex behavior of these nonlinear
systems with low numerical costs a neural network approximation of the performance functions is realized. As neural network input parameters
the important random variables of the random field in the uncorrelated Gaussian space are used and the output values are the interesting response
quantities such as deformation and load capacities. The neural network approximation is based on a stochastic training which uses wide spanned
Latin hypercube sampling to generate the training samples. This ensures a high quality approximation over the whole domain investigated, even
in regions with very small probability.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Estimating uncertainties is an important task in the design
process for engineering structures. While the standard way
using safety factors according to the valid design code is
applied in most practical cases, a newer development using an
explicit stochastic modeling of the uncertainties in the loading,
geometrical, and material properties becomes more and more
attractive as it designs more efficient structures.

Several procedures have been developed for a stochastic
analysis. A simple method is the description of such
uncertainties by a set of correlated random variables, where
each variable represents a material parameter, load factor, or
geometrical property. Such an approach is used for example
in [1,2] for the analysis of concrete bridges.

A more detailed method assumes a spatial distribution of
geometrical or material properties and models this random
distribution by a continuous field called a random field. In
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combination with the finite element method this approach is
generally called the stochastic finite element approach [3,4].
Fluctuations of material properties of steel structures were
investigated for example in [3,5]; the latter study simulates
discrete crack growth using the element-free Galerkin method.
Similar analyses have been carried out for concrete structures
in [6], where the cracking of the material was considered by
means of predefined cohesive interfaces.

Stochastic modeling of structures is generally performed
in order to determine the probabilistic response or to assess
reliability. Different procedures are usually applied in the
two cases. In the reliability analyses of engineering structures
generally very small failure probabilities have to be estimated.
In principle plain Monte Carlo Simulation (MCS) is suitable
for this task, but a large number of samples is required.
Several much more efficient methods have been developed for
this purpose. Two of these sampling strategies are importance
sampling [7] and adaptive sampling [8], which are improved
Monte Carlo simulations choosing a sampling distribution
different from the original distribution. Thus during the
stochastic simulation a large fraction of realizations will be
obtained in the failure domain and the probability of failure can
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be estimated very well with a much smaller number of samples.
Other methods are the first- and second-order reliability
methods, where the limit state function is approximated by a
linear or quadratic expression. For the investigation of complex
nonlinear systems the reduction of the number of required
evaluation points could be necessary. This is achieved by using
an approximation of either the performance function or the limit
state function. A powerful and widely used approach to such an
approximation is the Response Surface Method (RSM) [9,10],
where mostly a polynomial regression of the evaluated values
is used for the reliability analysis.

In recent years artificial neural networks (ANN) have
been applied in several studies for this purpose, e.g. in [11–
17]. In these studies the structural uncertainties in material,
geometry and loading have been modeled by a set of random
variables. A reliability analysis has been performed either
approximating the structural response quantities with neural
networks and generating ANN based samples or by reproducing
the limit state function by an ANN approximation and deciding
for the sampling sets upon failure without additional limit
state function evaluations. The main advantage of ANN
approximation compared to the RSM is the applicability
to higher dimensional problems, since the RSM is limited
to problems of lower dimension due to the more than
linearly increasing number of coefficients. In [18] firstly a
neural network approximation of the performance function
of uncertain systems in the presence of random fields was
presented, but this approach was applied only for simple one-
dimensional systems.

For the analysis of concrete structures the detailed
representation of a very complex process, the cracking in a
cohesive material, is very important. In this study discrete
crack growth is modeled using a meshless discretization to
represent the expanding discontinuity lines. In order to describe
the complex cracking process on the macroscale the fictitious
crack model [19] is applied. On the basis of a random
field modeling of the material fluctuations of the correlated
concrete parameters, the important response quantities such as
deformations, ultimate load and post-peak load–displacement
curves are approximated by neural networks. In order to reduce
the number of random variables, which are handled as input
values for the neural network, the random field is spectrally
decomposed according to [3]. An improved stochastic training
is presented, where an optimal approximation is achieved using
stretched Latin hypercube sampling. The performance of the
this approximation technique is shown for several numerical
examples.

2. Simulation of concrete cracking

In this work a meshless interpolation scheme is used for
the representation of growing crack discontinuities, where the
interpolation function depends only on the nodal positions.
Most meshless interpolation functions can represent continuous
stress functions which enables an easy state variable transfer
and a more accurate evaluation of a crack criterion even for
coarse discretization levels. As the meshless interpolation the

natural neighbor interpolation [20] is utilized in the framework
of a Galerkin approach [21].

The natural neighbor interpolation is based on the Voronoi
diagram and its dual Delaunay tessellation of the domain. Both
can be defined for an arbitrary set of nodes in the m-dimensional
space. In this study this concept is realized in a two-dimensional
framework. The application of this interpolation scheme in
a Galerkin approach is called the natural neighbor Galerkin
method or Natural Element Method (NEM) [21]. This method
shows several advantages compared to the common element-
free Galerkin method [22], such as the automatic fulfillment of
the essential boundary conditions. The NEM shape functions
have compact support and the interpolation fulfills the partition
of unity condition and linear completeness is satisfied [21].
More details about the application of the natural neighbor
interpolation for discrete crack growth modeling can be found
in [23,24].

Due to the flexible shape function formulation meshless
methods are in general more computationally expensive than
standard finite elements methods. Thus in this work an
adaptively coupled discretization is applied, where finite
elements are used in the parts of the structure without cracking
and the meshless interpolation is used in the cracked regions.

The cohesive crack behavior of concrete is modeled using
the fictitious crack model [19]. In this model the fracture
process zone ahead of a real crack tip is lumped into a fictitious
crack line transferring surface stresses until the crack width
reaches a critical value. In this study the cohesive forces
are transmitted via finite interface elements with linear shape
functions, which are placed automatically between the new
crack surfaces. The interested reader is referred to [23] where
more details of the cohesive crack growth algorithm can be
found.

3. Modeling of material uncertainties using random fields

A random field H can be interpreted as geometrically multi-
dimensional stochastic process, which can be described in a
domain D as

{H(x); x ∈ D ⊆ Rn
}. (1)

The dimension n of the geometrical space can be arbitrary.
In this study a two-dimensional representation is used and the
applied random fields are assumed to be weakly homogeneous
and isotropic. The correlation of the random field is defined by
the autocorrelation function RH H which is assumed here to be
of exponential type.

In this study the integration point method [3] is used
to discretize the random fields, where the uncertainties are
represented at the Gaussian integration points. There the
number of these points is equivalent to the number of random
variables. The discretized value at a point i is then directly given
as

Hi = H(xi ) (2)

and the number of random variables Hi = H(xi ) of the
discretized random field can be written in a random vector



Download	English	Version:

https://daneshyari.com/en/article/807332

Download	Persian	Version:

https://daneshyari.com/article/807332

Daneshyari.com

https://daneshyari.com/en/article/807332
https://daneshyari.com/article/807332
https://daneshyari.com/

