1. Introduction

Absorption spectroscopy is difficult to employ for in vivo biomedical measurements. The incident light is attenuated immediately on the sample surface because the scattering coefficient is two orders of magnitude higher than the absorption coefficient. Therefore, the sample-penetrating light, which provides a wealth of information about the inside of the subject, must be collected effectively. Multi-channel Fourier transform (McFT) spectroscopy [11] can realize much higher optical throughput than a polychromator [3,15].

However, this technique has not been used yet because the mechanical rotating polarizer moves slowly. Therefore, we developed a real-time McFT spectrometer that can achieve high optical throughput and high-frequency measurement. In recent years, polychromators have been developed to realize high-throughput spectroscopy [10] and enable the measurement of blood in vitro [1]; however, they are inferior to McFT spectrometers in terms of optical throughput [4].

It is possible to perform McFT spectroscopy without using polarized measurements, although it is difficult to do so when the optical signals are weak. Thus, the noise reduction enabled by polarized measurement is advantageous, especially in near-infrared or infrared sensors.

In McFT spectroscopy, an interferogram can be obtained from twice-polarized measurements. Interferograms can be categorized as in-phase or anti-phase. In-phase interferograms are formed when the phases of two interfering waves are the same, while anti-phase interferograms are formed when the interfering waves are exactly out of phase. The type of interferogram that is obtained can be switched by rotating the polarizer by 90°. These two types of interferograms have opposite signals but equivalent noise levels, which result from the incoherent light from multiple reflections and detector noise. Therefore, by subtracting an anti-phase interferogram from an in-phase interferogram, a new interferogram with twice the signal level and drastically reduced noise can be obtained. This procedure results in slower performance but compensates for noise. Simultaneous detection of both phase interferograms was proposed using a Wollaston interferometer for astronomical spectroscopy [2]. However, for a biological sample, the light source throughput should be increased, which is only possible by using a lateral shearing interferometer. Therefore, we proposed a biologically compatible method based on a lateral shearing interferometer. In this method, the in-phase and anti-phase interferograms are detected in the upper and lower halves of the area sensor, respectively. This procedure enables real-time measurement without affecting the optical throughput, which is necessary for in vivo biomedical measurement.

This technique will be useful for health risk and dietary habit management and could prevent lifestyle-related diseases such as diabetes, arteriosclerosis, and hyperlipidemia, which can cause myocardial and brain infarctions.
2. Methods

In order to realize the real-time spectrometer, we built a parallelized system using an area sensor instead of the often-used linear sensor. The optical setup is shown in Fig. 1. In this system, the polarization shearing interferometer has been modified by adding an area sensor and a combination polarizer. White light from a halogen lamp with an irradiation power density of 226 mW/cm² was guided through a 13-mm-diameter optical bundle fiber to illuminate a sample. The transmitted light was guided into the McFT spectrometer, which contains a lens, polarizer, Savart plate (Leysop, calcite, 10 mm thick), Fourier lens, and combination polarizer. After passing through the first polarizer, the linearly polarized beam is split into two equal-intensity parallel beams with orthogonal linear polarizations by the Savart plate. The Fourier lens reunites the two beams on the focal plane array of the detector. The upper half of the combination polarizer is parallel to the first polarizer and produces an in-phase interferogram, while the lower half is perpendicular to it and produces an anti-phase interferogram. The phase interferograms are detected simultaneously using an InGaAs area sensor with 640 pixels per line and 512 lines (NIReva 640ST, Princeton Instruments, New Jersey, US). In this study, we used 190 lines out of the total 512 lines for each of the interferograms. However, the diffracted light from the joint region of the combination polarizer was detected several tens of lines around the center lines. Therefore, a boundary area of about 100 lines between in-phase and anti-phase interferograms was removed from the signal. The top 16 and bottom 16 lines of the area sensor were also removed because of the non-homogeneous light distribution.

This interferometer is known for having a pincushion-like distortion primarily due to the oblique ray incident upon the Savart plate [12]. Although it is not of much concern when using a line sensor, this distortion has a slightly negative effect on the interferogram images acquired by an area sensor. We corrected this issue using software that warps interferogram images to obtain patterns with parallel lines.

As a fast-moving and strong scattering sample, the fingertip of a test subject was used in this study. Non-invasive blood testing has been reported for several decades; however, no actual device to obtain blood samples non-invasively has been proposed yet. One of the main reasons that no such device has been developed is that it is difficult to obtain reliable blood spectra from in vivo measurements, because the thickness and content of skin vary appreciably from person to person. Certainly diffuse reflectance spectroscopy can be used to achieve sufficient light intensity for the measurement, but diffuse reflections are easily affected by the skin conditions. Hence, we decided to use transmitted light spectroscopy to reduce the measurement uncertainty. The problem of signal weakness was solved by employing McFT spectroscopy with a high optical throughput.

We measured blood fat as a specific example of non-invasive blood testing. Two blood components change shortly after a meal: neutral fat and glucose [17]. Although glucose can be monitored to obtain important medical information, the key technology for extracting glucose includes the use of an analysis algorithm, such as multi-component analysis software, which is beyond the scope of the measuring equipment focused on in this paper [7]. Thus, to evaluate the proposed device, we measured neutral fat. Robust neutral fat detection with our developed device would be useful for the measurement of glucose.

We considered the absorption peak corresponding to a wavelength of 1200 nm to detect neutral fat. This wavelength is known to occur in molecular oscillations due to the second overtones of C–H vibrations, which occur predominantly in neutral fat and protein in the human body [16]. Unfortunately, most fat and protein absorption signals obtained from fingertip measurements are due to skin components, subcutaneous fat, and skin cell protein. However, real-time spectroscopy enables blood components to be distinguished from subcutaneous fat and skin cell protein by detecting the fingertip pulsations [8,9]. This kind of plethysmography is known to be useful for hemoglobin detection [13], because human blood is composed mostly of hemoglobin and water. Since lipids and glucose each only constitute 0.1 wt% of blood, optical non-invasive detection of these substances has not been realized directly.

3. Results and discussion

The in-phase and anti-phase interferograms were obtained using the upper and lower halves of the area sensor, respectively, and are shown in Fig. 2. These images were obtained after correcting the distortions using the geometrical warping transform. After the distortions were corrected, the in-phase and anti-phase interferograms, which each corresponded to 190 lines, were integrated into a single interferogram by subtracting the anti-phase interferogram from the in-phase.

Fig. 1. Schematic of the developed real-time McFT spectrometer with high sensitivity.

Fig. 2. Interferogram calculated from the InGaAs area sensor. (a) Detected interferogram on the area sensor corrected by warping calculation. The phase of interferograms is reversal between upper and lower halves. (b) Integrated interferograms from the upper half (in-phase) and lower half (anti-phase) of the sensor and the subtracted interferogram for removing the background noise.
دانلود مقاله

http://daneshyari.com/article/807353

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات