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a b s t r a c t

The uncertainties of renewable energy have brought great challenges to power system commitment,
dispatches and reserve requirement. This paper presents a comparative study on integration of
renewable generation uncertainties into SCUC (stochastic security-constrained unit commitment)
considering reserve and risk. Renewable forecast uncertainties are captured by a list of PIs (prediction
intervals). A new scenario generation method is proposed to generate scenarios from these PIs. Different
system uncertainties are considered as scenarios in the stochastic SCUC problem formulation. Two
comparative simulations with single (E1: wind only) and multiple sources of uncertainty (E2: load, wind,
solar and generation outages) are investigated. Five deterministic and four stochastic case studies are
performed. Different generation costs, reserve strategies and associated risks are compared under
various scenarios. Demonstrated results indicate the overall costs of E2 is lower than E1 due to pene-
tration of solar power and the associated risk in deterministic cases of E2 is higher than E1. It implies the
superimposed effect of uncertainties during uncertainty integration. The results also demonstrate that
power systems run a higher level of risk during peak load hours, and that stochastic models are more
robust than deterministic ones.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The large-scale penetration of IRESs (intermittent renewable
energy sources), such as wind and solar, into traditional power
systems has significant impacts on system commitment, dispatches
and reserve requirements [1]. There are generally two approaches
to manage and mitigate uncertainties from IRESs. One approach is
to improve the forecast accuracy as much as possible, using point
forecasting or probabilistic forecasting methods [2e4]. Another
approach is to develop advanced methodologies to effectively
manage these uncertainties [5,6] while realizing that forecast er-
rors will always exist to a certain degree. This research combines
these two approaches and integrates IRES uncertainties from
probabilistic forecasting into power system operations for UC (unit
commitment) scheduling and ED (economic dispatch).

Recent works in the field of renewable energy forecasting
indicate a shift from traditional point forecast methods towards

probabilistic forecasting [7]. This is due to the limitations of point
forecasting methods in adequately representing uncertainty. As
opposed to point forecasts, probabilistic forecasting quantifies un-
certainty in the form of quantiles, intervals, scenarios or density
prediction [7]. Despite significant progress in the field of probabi-
listic forecasting, literature is quite weak in terms of embedding
these forecasts into optimization and decision-making processes
[6]. Probabilistic forecasting encounters the multivalued problem
when used for decision-making. Taking the PIs (prediction in-
tervals) as an example, a single level of PI consists of three com-
ponents: the upper bound, the lower bound and the corresponding
confidence level (1�a)% [8]. Compared to the single value of point
forecasts, the multiple values of PIs become a barrier to the
computation and decision-making [6]. This becomes even more
challenging if PIs with different significance levels are constructed.

To manage the uncertainties during renewable energy integra-
tion to the gird, fuzzy logic models [9e11], robust optimization
[12e14], CCP (chance-constrained programming) [15e17] and sto-
chastic programming models [18,19] address the problem in
different perspectives. In fuzzy logic models, fuzzy sets and mem-
bership functions are used to represent the variability of IRESs. In
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Ref. [9], fuzzy-optimization was proposed for solving the genera-
tion scheduling problem. Hourly load, available water, wind speed
and solar radiation forecast errors were taken into account using
fuzzy sets. Robust optimization-based methods model the
randomness using an uncertainty set which includes the worst-
case scenario. The uncertainty set can be constructed from the PIs
or quantiles of IRES forecasting. In Ref. [12], Jiang et al. studied the
robust UC with wind power and pumped storage hydro, and
developed an algorithm to automatically simulate the worst-case
scenario where the wind power output changes between upper
and lower bounds. An extension of robust optimizationwas derived
in Ref. [13] as adjustable robust optimization. CCP describes un-
certainty in the form of probability attainment [15], implying that
one or a set of constraints has a desired probability of satisfaction.
However, CCP problems are usually computational intractable
because the feasibility region defined by chance constraints is
generally not convex, or multi-integration is required to calculate
probability indices.

The cornerstone of stochastic programming models is the
probability and scenarios. In these models, each scenario repre-
sents one possible realization of the renewable power, and the
expected value is further calculated to make operational decisions.
In Ref. [19], Wu et al. implemented a SCUC (stochastic security-
constrained UC) study in which the scenario-based stochastic
SCUC was compared with the optimistic and pessimistic solutions
obtained from the interval optimization [19].Wang et al. in Ref. [20]
emphasized the aspects of intermittence and volatility of wind
power in SCUC. Wind power was assumed to follow a normal dis-
tribution and Monte Carlo simulation was used to generate sce-
narios. In Ref. [21], Ortega-Vazquez et al. considered wind power
generation as a negative load to estimate the spinning reserve re-
quirements in systems with significant wind power penetration.
The net demand forecast error was generated using a Gaussian
cumulative probability distribution. In Ref. [22], a stochastic pro-
gramming framework was built as a multi-objective problem and
different sources of uncertainties were taken into consideration for
optimal operation of micro-grids.

It is noted that most of the previous studies make special as-
sumptions on wind speed distributions, either a normal distribu-
tion [21] or a Weibull (Rayleigh) probability distribution [18]. The
robust UC needs to predefine the uncertainty set and find the
worst-case scenario [14]. To generatewind power scenarios, in Refs.
[23,24] the complex covariancematrix needs to be calculated based

on a multivariate Gaussian distribution assumption. Although the
works highlighted above have focused on integration of IRESs into
UC, very few have conducted an extensive comparative study. They
either consider only wind uncertainty [19,20] or integrate some
uncertainties together [22,25]. Moreover, these studies are con-
ducted in a separate manner.

The main goal of this paper is to conduct a comparative study on
integration of renewable generation into grid scheduling from the
uncertainty management and risk assessment points of view. Our
main contributions are summarized below:

(1) An extensive comparative study has been conducted, and the
case with wind-only uncertainty is compared to the case
with multiple uncertainties arising from load, wind, solar
and generator outages.

(2) A novel scenario generation method is proposed to capture
renewable uncertainties from PIs without making specific
assumptions about data distributions.

(3) Five deterministic and four stochastic UC strategies are
implemented and compared under various scenarios.

(4) Different reserve strategies are investigated, and the sched-
uled reserve and real time ED reserve are compared.

(5) The conclusion derived from these studies can serve to
provide some guidelines for system operators from the
reserve and risk assessment perspectives.

The rest of this paper is organized as follows. Uncertainty rep-
resentation with renewable generation is introduced in Section 2.
Problem formulation and the GA (genetic algorithm)-based solu-
tion method are described in Section 3. Sections 4 and 5 describe
case studies and discuss simulation results. Finally, Section 6 con-
cludes the paper.

2. Uncertainty representation with renewable generation

2.1. Load uncertainty representation

Although the load forecasting errors, such as MAPE (mean ab-
solute percentage errors), are much smaller than the errors asso-
ciated with IRESs, the MW value of load forecasting error is
typically large. A common method is to model the load uncertainty
as normal distribution [6,26]. In this paper, load forecast errors are
assumed to follow the normal distribution, and load uncertainty is

Nomenclature

i index of generators, i ¼ 1, …, N
t index of scheduled hours, t ¼ 1, …, H
s index of scenarios, s ¼ 1, …, S
ps the probability of scenario s
Xi,t the scheduled state (on/off) of unit i at time t
Pi,t the output power of unit i at time t
E(X,P) objective function: the expected product costs
Fi(Pi,t) fuel cost of unit i when its output power is Pi,t
ai, bi, ci coefficients for quadratic cost curve of unit i
SUi,t startup cost of unit i at time t
CSUi,t cold startup cost of unit i at time t
HSUi,t hot startup cost of unit i at time t
Rst the spinning reserve at time t in scenario s
Dt the system demand at time t
ENSst the energy not served at time t in scenario s

RNSst the reserve not served at time t in scenario s
Cens the cost of energy not served
Crns the cost of reserve not served
Ws

t wind generation at time t in scenario s
PVs

t solar generation at time t in scenario s
FOs

t generator forced outage at time t in scenario s
Pi,max maximum real power generation of unit i
Pi,min minimum real power generation of unit i
Toff
i;t the continuously off time of unit i at time t

Ton
i;t the continuously on time of unit i at time t

TUp
i the minimum up time of unit i

TDown
i the minimum down time of unit i

Tcold
i the cold start hours of unit i

a the significance level, and (1�a)% is the nominal
confidence level of prediction intervals

A a system-dependent constant in fitness function
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