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a b s t r a c t

This paper discusses a novel differential voltage curve capacity estimation to determine the state of
health of LiFePO4 cells. Differential voltage curves are used because of their ability to detect and quantify
degradation mechanisms. The estimation is carried out through partial charging or discharging tests, and
is specifically designed for battery management systems, due to the trade off between accuracy and low
computational effort. This means the method can be effectively executed online, in a real application. The
technique is also able to accurately detect the end of life of the cells.

Aging datasets of 18 cells with identical chemistry were used for both parametrization and validation.
The cells were subjected to a wide range of cycling and storage conditions, including temperature, state
of charge, charging and discharging rate, depth of discharge and state of health. The performance and
robustness of the estimation are validated by means of the degradation datasets from more than 25
different scenarios at the cell and battery pack level. The related results indicate that the proposed health
management strategy has an average relative error of 1.5% at the battery pack level.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The requirements and demands that batteries must meet are
constantly increasing. Therefore, effective control andmanagement
is needed to ensure the safe use of batteries, with the best possible
performance. Despite the fact that the diagnosis and prognosis of
the SoH (State of Health) is essential for practical applications, so far
they are neither effective nor accurate. The BMS (Battery Manage-
ment System), among the technical tasks that it carries out, is
responsible of monitoring the State of Health of the battery.

The SoH reflects the ability of a battery to store and supply en-
ergy relative to its initial conditions, considering the energy and
power requirements of the application. This estimation is needed to
identify any decrease in the performance (in terms of capacity and
power) of the battery and to detect its end of life. SoH reflects the
current condition of the battery in terms of a percentage, refer-
enced to a fresh cell. While SoH has a value of 100% when the
battery is fresh, at its BoL (begin of life), it decreases with age until it
reaches its EoL (end of life). The EoL of the battery is defined by the
application requirements. For example, at SoH< 80%, the battery is

considered no longer usable by an electric vehicle and should be
replaced [1].

SoH determination is usually based on either the decrease of
battery capacity or the increase in internal resistance. A decrease in
capacity and power fading do not originate from one single cause,
but rather from a number of different processes and their in-
teractions on the positive or negative electrodes [2]. Traditional
methods used to study these processes require the destruction of
the cell, rendering any further use of the cell impossible. As pre-
viously published in our previous work [3], a less aggressive
determination of SoH is possible through two different approaches:
adaptive models and experimental techniques.

Experimental methods record the historical cycling data of the
battery. This information, combined with previously obtained
knowledge about the influence of the main parameters affecting
the battery lifetime, make it possible to estimate the SoH. This
approach requires a good insight into the interrelation between
operation and degradation of the battery cell, obtained through
either physical analysis or the evaluation of large historical opera-
tion data sets in connection with SoH tests on the battery cell. This
category could be considered to include methods such as sample
entropy [4], data fitting [5] or probabilistic methods [6]. In the case
of sample entropy [4], the SoH is estimated using a Bayesian pre-
dictive technique and sample entropy. The sample entropy of short* Corresponding author. Tel.: þ34 945 297 032; fax: þ34 945 296 926.
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voltage sequences is used as an effective signature of capacity loss.
The Bayesian prediction establishes the correlation between the
loss of capacity and the results from the sample entropy. Several
experimental data sets have been used, taking into consideration
the effect of the temperature. In data fitting [5], the estimation is
based on the battery cycle number, using the ECE 15 driving cycle.
This is of great importance in order to conduct realistic experiments
on electric vehicles. Consequently, the method is independent from
the battery parameters, which are difficult to obtain while driving.
The author in Ref. [6] proposes a probabilistic method for esti-
mating the SoH by analyzing the charge and discharge data of
electric storage batteries. The method has its origins in classic
probability theory. It consists of calculating the probability of the
number of times when the same voltage would be measured, ac-
cording to the discharge curves for new and aged batteries.

Adaptive methods determine the SoH through calculations
based on parameters that are sensitive to the degradation of the
battery cell. The necessary data must be measurable or examined
throughout the operation of the battery. The advantage of this
option is that a large number of tests and simulations of the battery
behavior is not required. It will ensure better adaptability to
different battery types and chemistries, but there is also the
drawback that it has a high computational load, which complicates
the online running of the model on a real application [7]. Another
limitation of these approaches is that they cannot detect inter-
mittent failures [8]. Methodologies like Kalman filters [9], neural
networks [10] and fuzzy logic [11] can be considered adaptive
methods. Authors in Ref. [9] based their research on the use of two
extended Kalman filters with different time scales, in order to es-
timate both SoH and SoC (state of charge). A method in which a
neural network has been used for SoH estimation is also indicated
in the references [10]. This work describes the SoH monitoring of a
high-power-density Li-ion cell, using recurrent neural networks to
predict the deterioration of battery performance. Many other au-
thors use fuzzy logic techniques in combination with EIS (Electro-
chemical impedance spectroscopy) to estimate SoH [11]. In this
work, different conditions of temperature and SoC are studied in
lithium ion batteries. In order to obtain a clearer view of the main
differences between the experimental and adaptive methods, the
following table was developed. It clearly indicates the main ad-
vantages and drawbacks of the different methods (Table 1).

Differential voltage techniques using DV (differential voltage)
curves and/or IC (incremental capacity) curves also need to be
considered, as they might be very beneficial for SoH estimation.
These techniques have recently emerged and have been used by
many researchers in order to reveal battery degradation mecha-
nisms occurring in a battery cell. M. Dubarry et al. [12] combine
modeling and experimental techniques in order to develop a uni-
versal tool for diagnosis and prognosis. The model consists of a
modified equivalent circuit model capable of simulating the
different degradation modes via a synthetic approach based on the
behavior of electrodes reflected by the study of the DV and IC
curves. On the contrary, it seems difficult to implement this tech-
nique online. Researchers such as Bloom [13] have illustrated how

the capacity loss of cells can be shown based on DV curves. Tests
were conducted for 18650-sized cells. These high-power Li-ion
cells were characterized in terms of performance of both cycle and
calendar life at 45 �C. The research showed that the capacity fade of
these cells was due to side reactions at the anode. In a later work
[14], LiNi1exeyMnyCoxO2 (NMC) positive electrodes were tested
using the same technique. This analysis indicated that lithium-
capacity-consuming side reactions were occurring primarily at
the negative electrode. In Ref. [15], the author uses DV and IC curves
in order to study aging mechanisms of five commercial lithium-ion
batteries. Nevertheless, the author mentions that further research
is still required to achieve the on-board identification of the aging
mechanism. Although very accurate results have been obtained
from these studies, there is still no method to carry out an online
estimation for real-time applications.

After providing an overview of the different techniques pro-
posed in literature, this paper then focuses on a specific method,
which is based on the use of differential voltage curves. It is
considered that this technique can be very beneficial in order to
estimate the SoH of a cell and battery pack. Indeed, the technique
reported in this work estimates the SoH based on DV curves with an
average error at the cell level of less than 1%. The tested cells are
made up of LiFePO4 (LFP)-based active material on the PE (positive
electrode) and graphite intercalation compound (G)-based active
material on the NE (negative electrode). Due to the fact that each
has its own chemical characteristics, their operational modes are
also different. Therefore, their DV and IC curves will also be
different, accordingly. For this reason, the method that has been
developed is only valid for LFP cells or batteries.

The method employs the DV curves to detect not only the SoH
itself, but also the EoL of the cells. Furthermore, the benefit of this
procedure is that it can be implemented in a BMS and run in real
time. The process developed to validate this method covers 29
different scenarios, in order to deal with a wide variability of
cycling parameters, and it also stores the scenarios at cell and at
battery pack level.

The paper is organized in the following manner: Section 2
presents the basic principle of DV and IC curves, including how
the parameterization is performed. For this purpose, the cells and
equipment used in the present case are introduced. The following
section explains in depth how the SoH estimation technique works.
Section 4 presents the results of the validation stage, the great
variability of scenarios in which the method has been tested, and
the results obtained at the cell and battery pack level. Finally,
Section 5 presents the main conclusions, followed Section 6, which
details further steps to be taken in order to expand this technique to
other chemistries.

2. Characterization

2.1. Differential voltage curves

It is well established that dominant aging mechanisms on
graphite anodes are caused by SEI (Solid Electrolyte Interphase)

Table 1
Differences between experimental techniques and adaptive methods [3].

SoH estimation methods

Experimental techniques Adaptive methods

Based on Recording the lifetime data and the use of previous knowledge about
the operational performance of the cell/battery.

Calculation of parameters sensitive to degradation in a cell/battery.

Advantages - Low computational effort
- Possible implementation in a BMS

- Highly accurate
- May be used for in situ estimates

Drawbacks - Not very accurate
- Not suited for in situ estimates

- High computational effort
- Difficult to implement in a BMS
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