

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source

Yajing Zhao ^a, Jiangfeng Wang ^{a, *}, Liyan Cao ^a, Yu Wang ^b

- ^a Institute of Turbomachinery, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- ^b Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

ARTICLE INFO

Article history:
Received 16 September 2015
Received in revised form
31 December 2015
Accepted 3 January 2016
Available online xxx

Keywords: Exergoeconomic analysis Exergy analysis Geothermal energy CCP Optimization

ABSTRACT

A CCP (combined cooling and power) system, which integrated a flash-binary power generation system with a bottom combined cooling and power subsystem operating through the combination of an organic Rankine cycle and an ejector refrigeration cycle, was developed to utilize geothermal energy. Thermodynamic and exergoeconomic analyses were performed on the system. A performance indicator, namely the average levelized costs per unit of exergy products for the overall system, was developed to assess the exergoeconomic performance of the system. The effects of four key parameters including flash pressure, pinch point temperature difference in the vapor generator, inlet pressure and back pressure of the ORC turbine on the system performance were evaluated through a parametric analysis. Two single-objective optimizations were conducted to reach the maximum exergy efficiency and the minimum average levelized costs per unit of exergy products for the overall system, respectively. The optimization results implied that the most exergoeconomically effective system couldn't obtain the best system thermodynamic performance and vice versa. An exergy analysis based on the thermodynamic optimization result revealed that the biggest exergy destruction occurred in the vapor generator and the next two largest exergy destruction were respectively caused by the steam turbine and the flashing device.

1. Introduction

The demand for energy is growing at an increasing rate due to the growth of population, and is arousing wide concerns about the security of energy supply for the long term [1]. Energy resources have been divided into three categories: fossil fuels, renewable resources and nuclear resources [2]. Using fossil fuels can result in environmental deterioration and resource depletion. Nuclear energy can cause serious problems for the environment and human health. Renewable energy sources, which are sustainable and environmental friendly, are hence under emerging exploitation [3]. Among all kinds of renewable energies, geothermal energy, which has abundant amount of storage [4] as well as significant base-load potential [1], is expected to make an increasing contribution for energy supply in a near future [5].

E-mail address: jfwang@mail.xjtu.edu.cn (J. Wang).

Variety of thermal systems have been developed to utilize geothermal energy. Conventional power systems that simply converted geothermal energy into electricity have been widely studied since 1904 when a dry-steam geothermal power system was first built and operated in the Tuscany region of Italy [6]. Although dry-steam power systems can utilize the dry geothermal steam directly to produce electricity, dry steam reservoirs are rare and only found in few fields around the world while most of the remaining conventional geothermal fields worldwide are wet fields [7]. Hence, more attention has been paid to other types of power systems including single-flash steam power systems, double-flash steam power systems, binary cycle power systems and flash-binary power systems to develop wet geothermal fields for power generation [8-12]. Particularly, for temperature of the geothermal water below 180 °C where direct flashing processes are not suitable anymore [13], ORC (organic Rankine cycle) and Kalina cycle, both of which are well proven and reliable technologies for energy conversion, especially for exploiting low-temperature heat sources, have been widely applied as the subsystem in binary cycle power systems [10–12,14–20]. However, conventional power plants can

^{*} Corresponding author. Institute of Turbomachinery, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an 710049, China. Tel./fax: +86 029 82668704.

Nomenclature		ho	density (kg/m ³)
4	and a captional and (m2), host avalonment and (m2)	μ	viscosity (kg s $^{-1}$ m $^{-1}$)
4 3o	cross sectional area (m ²); heat exchanger area (m ²)	Cubacrin	to
	boiling number	Subscrip	
•	cost rates (\$ year ⁻¹)	A B	upper part lower part
dif	fictitious cost rates associated with dissipative	ь ВМ	bare module
	components ($\$$ year $^{-1}$)		
EPCI	chemical engineering plant cost index	cond cond1	condenser condenser 1
RF	capital recovery factor	cond2	condenser 2
	levelized costs per unit of exergy (\$ (MWh) ⁻¹)	D	destruction
p	specific heat $(J kg^{-1} K^{-1})$	elec	electricity
)	diameter (m)	es	equivalent diameter
Ī	annual exergy transfer rates (J year $^{-1}$)	evap	evaporator
x	exergy flow rates (J s^{-1})	ex	exergy
x	specific exergy (J kg ⁻¹)	F	fuel
7	factor	he	heat exchanger
•	friction factor	i,j,k	state points
j	mass velocity (kg m $^{-2}$ s $^{-1}$)	i,,,,, i	inside
ı	enthalpy (J kg^{-1}); convection heat transfer coefficient	in	inlet
	$(W m^{-2} K^{-1})$	ip	inlet pipe
eff	effective discount (%)	L L	loss
K	constant	1	liquid
Ĺ	length (m)	M	material factor
В	baffle spacing (m)		mean
Й	mass flow rates (kg s $^{-1}$)	m	maximum
V	number of the tubes	max	minimum
	lifetime (year)	min	outside
ı Nu	Nusselt number	0	outlet
p	pressure (bar)	out P	
Pr	Prandtl number		product; pressure factor
P_t	distance between tubes (m)	pump	pump
Q_{vs}	volumetric stream flow (m^3 s ⁻¹)	pump1	pump 1
	· · · ·	pump2	pump 2
Q	heat transfer rate (W)	q	heat transfer; cold exergy output
7m	average imposed wall heat flux (W m ⁻²)	ref	reference period
Re	Reynolds number	S	single-phase
r	enthalpy of vaporization (J kg ⁻¹)	SS	shell-side
; r	specific entropy (J kg ⁻¹ K ⁻¹)	sep	separator
Γ	temperature (K)	system	exergy products produced by the overall system
: : :	working hours (hours)	th	thermal
IJ	overall heat transfer coefficient (W m ⁻² K ⁻¹)	tot	total
V	volume (m ³)	ts	tube-side
V _t	terminal velocity (m s ⁻¹)	turb	turbine
W	power (W)	turb1	steam turbine
K	vapor quality	turb2	ORC turbine
,	exergy destruction ratio (%)	V	vapor
Ż	annually levelized cost value ($\$$ year $^{-1}$)	vg	vapor generator
		W	power
Greek le	etters	well	drilling wells
δ	thickness (m)	wt1	power produced by steam turbine
Δt_m	logarithmic mean temperature difference between hot	wt2	power produced by ORC turbine
	side and cold side (K)	У	per year
g	component exergy efficiency (%)	0	ambient state
η	efficiency (%)	1-23	state points
λ	thermal conductivity (W $m^{-1} k^{-1}$)		

only produce electricity and are not adequate for meeting with diverse consumers' requirements for energy supply. To satisfy the diverse users' demands and to utilize the energy source more efficiently, some cogeneration systems that combines electricity generation with other kinds of energy production have been

developed for the exploiting of low- or medium-temperature heat sources such as geothermal water. A number of studies on geothermal cogeneration systems have been concentrated on the CHP (combined heat and power) technologies, which are relatively mature technologies directly using the geothermal water

Download English Version:

https://daneshyari.com/en/article/8074331

Download Persian Version:

https://daneshyari.com/article/8074331

Daneshyari.com