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A data-driven approach to optimize the total energy consumption of the HVAC (heating, ventilation, and
air conditioning) system in a typical office facility is presented. A multi-layer perceptron ensemble is
selected to build the total energy model integrating three indoor air quality models, the facility tem-
perature model, the facility relative humidity model, and the facility CO, concentration model. To bal-
ance the energy consumption and the indoor air quality, a quad-objective optimization problem is

constructed. The problem is solved with a modified particle swarm optimization algorithm producing
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control settings of supply air temperature and static pressure of the air handling unit. By assigning
different weights to the objectives to the model, the generated control settings optimize HVAC system
with the trade-off between the energy consumption and the facility thermal comfort. Significant energy
savings can be obtained even with air quality constraint.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

HVAC (heating, ventilating and air conditioning) systems are
designed to maintain comfortable living and working environment
measured with metrics of IAQ (indoor air quality). The published
statistics [ 1] indicate that the HVAC systems account for almost 31%
of the electricity consumed by U.S. households. The weight and the
increase in energy consumption have led to great interest in energy
conservation of HVAC systems.

Analytical models for local devices as well as systems to improve
operations and energy efficiency of the HVAC have been published
in the literature. Such models are usually derived from fundamental
laws of energy, mass, and heat transfer. Yu et al. [2]| developed
dynamic models for both dry and wet cooling coils using the mass
balance and energy equations. Zhang et al. [3] proposed a physics-
based supervisory control strategy to minimize the net external
energy consumption under constraints. If all assumptions are
satisfied, the physics-based models are reliable. Though very
important, detailed physics-based models often involve high
computational cost and excessive memory demand due to their
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complexity, which makes them difficult to apply in real-time ap-
plications [4]. To overcome this obstacle, simplified models and
simulation are often used. Wang et al. [5] presented a simple, yet
accurate, model for optimization and control of a cooling coil unit.
Henze et al. [6] modeled a building in TRNSYS and proposed a
model predictive control strategy real-time control of the active
and passive building thermal storage inventory. One limitation of
the simulation-based approaches is that the executed models are
steady-state or quasi-steady-state, which makes them not suitable
for handling high frequency disturbances [7]. In this paper, data-
driven models of energy consumption are proposed. Data mining
algorithms establish mappings between input and output variables
without requiring detailed prior knowledge of the modeled pro-
cess. Some research on applications of data mining paradigms in
the building energy area has been published [8—11]. Kusiak and Li
[8] applied data mining algorithms to build dynamic models of the
energy consumption and the thermal comfort of a HVAC system. Du
et al. [9] proposed a wavelet neural network to conduct fault di-
agnose in variable air volume systems to ensure well capacity of
energy conservation. Freire et al. [10] presented using different
model-based predictive control algorithms for energy consumption
minimization while maintaining indoor thermal comfort. Ferreira
et al. [11] studied using radial basis neural networks for predictive
modeling a HVAC system. The discrete branch and bound algorithm
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was applied to optimize the energy spent by the HVAC system with
constraints of the thermal comfort.

In this paper, data mining algorithms has been applied to the
data collected from experiments conducted in an energy research
facility to investigate the relationships between control settings
and energy consumption as well as facility IAQ (indoor air quality)
index. Rather than minimizing the energy in a single objective, a
trade-off between the energy consumption and IAQ is considered.
The total energy model and the IAQ models built by data-mining
algorithms are transformed into a multiple objective optimization
model. To solve this four objective optimization problem, a PSO
(particle swarm optimization) algorithm based on two-level non-
dominated solutions is proposed. The PSO algorithm generates
control settings in response to the changing different internal load
and uncontrollable variables, including the energy consumption of
the total system and the facility. The air quality metrics are assigned
different weights reflecting preferences of the occupants.

2. Data description and parameter selection

The data used in this research was obtained from an experiment
performed at the ERS (Energy Resource Station) of the lowa Energy
Center. ERS is a facility designed for testing and demonstration of
commercial HVAC systems. It is located on the campus of the Des
Moines Area Community College in Ankeny, lowa. Its latitude is
41.71° North and longitude is 93.61° West, with an elevation of
937.0 ft above sea level.

The floor plan of the ERS facility is provided in Fig. 1. It consists of
three distinct and separate areas: the A test rooms (Area A in Fig. 2),
the B test rooms (Area B in Fig. 2), and the general area. The A rooms
are served by the air handling unit A (AHU-A) and the B rooms are
served by another identical air handling unit B (AHU-B). The gen-
eral rooms are composed of all remaining rooms in the building and
served by an independent air handling unit designated as AHU-1.

The designed maximal cooling capacity of the AHU is 35.784 kW
(122,100 BTU/H), the maximal supply air flow is 5436.8 m>/h
(3200 CFM), the maximal supply fan static pressure is 0.797 kPa
(3.2 in. WG), and the maximal supply fan speed is 1834 RPM.

Due to the fact that AHU (air handling unit) consumes a large
proportion (up to 60%) of the total HVAC energy, the objective of
this experiment was to investigate the impact of AHU setpoints on
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Fig. 1. Plan view of the ERS facility.

the total energy consumption. Two setpoints, namely the AHU
supply air temperature setpoint and static pressure setpoint were
adjusted in both testing areas A and B. The supply air temperature
setpoint varied from 50 °F (10 °C) to 65 °F (18.33 °C) with 1 °F
(0.55 °C) increments. The supply air static pressure setpoint varied
from 1.2 in WG (0.3 kPa) to 1.8 in WG (0.45 kPa) at 0.2 in WG
(0.05 kPa) increments. In each thermal zone, baseboard heat and
lighting simulated different stages of internal load. In the experi-
ment, there were no real occupations in the test areas. The internal
thermal loads of zones produced by occupations and thermal ac-
tivities are simulated by the android systems and lighting systems.
The android systems are sheet metal cylinders equipped to
generate occupant heat at a standard office work activity level and
computer work-stations are activated to simulate equipment loads.
During the experiment, four stages of the internal load were
simulated. Sensors measured air temperature, humidity, and air
flow rate at different locations of the HVAC system. The energy
consumption of devices such as pumps and fans were also recor-
ded. Data on more than 500 parameters was collected at 1 min
sampling intervals. The experiment period was from 9:00 PM of
July 31 2009 to 9:00 PM of August 16 2009. Since each day of the
experiment covered a specific combination of setpoints, an arbi-
trary partitioning of the data into training and testing parts based
on time could not produce a valid model. Therefore, the sampled
data is used for parameter selection, algorithm selection, and
model construction. The data collected in the ERS experiment is
described in Table 1.

Note that minimum time interval of each observation is 1 h. The
minimum sampling time interval for the original data is 1 min. To
derive models from the high resolution (1 min) data, two
commonly used statistical measures, the mean and standard de-
viation are employed. Based on the domain knowledge and
parameter selection algorithms like boosting tree [12,13] and
wrapper [14], eleven parameters have been selected for building
the energy and IAQ models. Table 2 lists the parameters selected for
building the IAQ models and the total energy model.

3. Algorithm selection

The parameters listed in Table 1 are used to build the total en-
ergy model and the IAQ models expressed in (1) to (4).

Y1() =f1(x1(8),X1 (£ = 1),X2(t),X3(8),v1 (£),v2(t), v3(t),v4 (1), v5 (1))

(1)
yZ(t) :fZ(xl (t),X] (t—]),Xz(f),X:;(t),v] (t),vz(t),U3(f),l)4(t),l/5(t))
(2)
Y3(t) = f3(x1(£),x1(t — 1), X2(t), X3(8), v1(t), v2(£), v3(t), v4 (L),
vs(t), ve(t))
(3)
Ya(t) = fa(x1(£), x1(t — 1), x2(t), x3(t), v1 (t), v2(t), v3(t), va(l),
vs(t),v7(t))
(4)

where y1(t), y2(t), y3(t), ya(t) denote the total energy consumption,
average facility temperature, average facility humidity, and the
average facility CO, concentration during 1 h time period,
respectively.

To extract the mapping among the variables involved in models
(1)—(4), several data-mining algorithms are used, namely CHAID
(Chi-squared Automatic Interaction Detector), Exhaustive CHAID,
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