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a b s t r a c t

The anti-plane shear problem about a circular hole with a straight crack in one-dimensional (1D) hexag-
onal quasicrystals (QCs) with piezoelectric effects is investigated by means of the complex variable func-
tion method and using the technique of conformal mapping. The analytic solutions of the stress intensity
factors (SIFs) and the electric displacement intensity factors (EDIFs) with electrically impermeable and
permeable conditions were obtained, and these solutions have an important theoretical significance
for the engineering application of QCs materials. When the circle radius tends to zero, the present results
can be reduced to the cases of the Griffith crack. In the absence of the phason field, the obtainable results
in this paper agrees well with the results for piezoelectric materials. Numerical analysis is then
conducted to discuss the influences of geometric parameters and applied mechanical/electric loads on
the field intensity factors and energy release rate.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As a class of smart materials, piezoelectric materials have been
widely used in adaptive microelectro-mechanical systems such
as sensors, actuators, and transducers due to a strong coupling
characteristic between elastic and electric behaviors [1,2]. Now,
piezoelectric sensors, actuators, and transducers of various
configurations can be manufactured for specified functions [3].
For example, in signal processing applications, with the aid of exci-
tation or reception of the surface acoustic waves, an interdigital
transducer is a thin piezoelectric layer bonded perfectly on a elastic
substrate. And on the surface of the piezoelectric film, an array of
electrodes is arranged according to different patterns [4].

Shechtman was awarded the Nobel Prize of Chemistry 2011 due
to the discovery of QCs in 1984, which has arisen the great interest
on the structure and material again [5]. The theoretical frame of
QCs comes from physical research which has been done by some
researchers [6,7]. Based on Landau–Anderson symmetry-breaking,
the phason as a new elementary excitation was introduced in addi-
tion to the well known phonon. QCs possess unique atomic structures
with perfect long-range positional order with noncrystallographic
rotational symmetry. Both the mass-density-wave and the

unit-cell described in higher dimensional space can be used to
decipher their atomic structures [8,9]. According to the cut-and
projection method, a 3D quasilattice can be obtained by selected
projection of the respective 6D periodical lattice [10,11]. Therefore,
there are two kinds of displacement fields in elasticity. One is a
phonon displacement field, which is the same as the displacement
field of usual crystals, and whose gradient describes the change in
shape and volume macroscopically. The other is new and named as
a phason displacement field, which is diffusive due to the elemen-
tary excitation associated with the phason mode and describes the
local rearrangements of the unit-cells. Experiments have shown
that QCs are quite brittle [12] and the defects of quasicrystalline
materials have been observed [13]. When quasicrystalline materi-
als are subjected to mechanical stresses in service, the propagation
of flaws or defects produced during their manufacturing process
may result in premature failure of these materials. Therefore, the
study of crack problem of quasicrystalline materials is meaningful
both in theoretical and practical applications. Fan [14] presented
the mathematical theory of quasicrystalline elasticity. Using this
theory, a straight dislocation and a moving screw dislocation in
1D hexagonal QCs were addressed by Li and his coauthors
[15,16]. It is well known that the complex variable method initially
developed by Muskhelishvili is an effective method for solving var-
ious elasticity and defect problems [17]. Therefore, some workers
developed the complex variable method to solve defect problems
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of QCs. For 1D hexagonal QCs many efforts have been made in the
fields of the mechanic involving the elasticity and defects [18–22].
Wang and Pan [23] studied some typical defect problems in
octagonal QCs and derived the general solutions of elastic fields
by means of the differential operator theory and the complex
variable method. Some Reducing the boundary value problem to
the Riemann–Hilbert problem of periodic analytic functions, Shi
[24] obtained the closed-form solutions of collinear periodic cracks
and/or rigid inclusions of antiplane sliding mode in 1D hexagonal
QCs.

Although many crack problems of 1D hexagonal QCs have been
investigated, but the paper mentioned before discussed various
elasticity and defect problems of QCs. To our knowledge, the QCs
with piezoelectric effects researches are very little, especially the
study of QCs piezoelectric properties. Analytic solutions of two col-
linear fast propagating cracks in a symmetrical strip of 1D hexag-
onal piezoelectric QCs have been studied [25]. The present paper
is devoted to investigating the elastic problem of a circular hole
with a straight crack in 1D hexagonal QCs with piezoelectric effects
by means of complex variable function method with conformal
mapping. Two kinds of crack surface conditions, i.e. electrically
impermeable and permeable are adopted. The exact solutions of
SIFs for the phonon field and the phason field, and the EDIFs are
obtained respectively, which are useful in practice. When the circle
radius tends to zero, the present results can be reduced to the cases
of the Griffith crack. Furthermore, in the absence of the phason
field, the exact solutions of the field intensity factors presented
in this paper can be degenerated into the corresponding results
of piezoelectric materials.

2. Basic theory

The generalized Hooke’s law of 1D hexagonal QCs with piezo-
electric effects, whose period plane is the ðx1; x2Þ-plane and whose
quasiperiodic direction is the x3-axis, is given by Wang and Pan
[23]

r11 ¼ C11e11 þ C12e22 þ C13e33 þ R1w3 � e131E3;

r22 ¼ C12e11 þ C11e22 þ C13e33 þ R1w3 � e131E3;

r33 ¼ C13e11 þ C13e22 þ C33e33 þ R2w3 � e133E3;

r23 ¼ r32 ¼ 2C44e32 þ R3w2 � e115E2;

r31 ¼ r13 ¼ 2C44e31 þ R3w1 � e115E1;

r12 ¼ r21 ¼ 2C66e12;
H1 ¼ 2R3e31 þ K2w1 � e215E1;

H2 ¼ 2R3e32 þ K2w2 � e215E2;

H3 ¼ R1ðe11 þ e22Þ þ R2e33 þ K1w3 � e233E3;

D1 ¼ 2e115e31 þ e215w1 þ 211E1;

D2 ¼ 2e115e32 þ e215w2 þ 211E2;

D3 ¼ e131ðe11 þ e22Þ þ e133e33 þ e233w3 þ 233E3;

ð1Þ

where rij; Hjði; j ¼ 1;2;3Þ are the phonon and phason stress compo-
nents; Ej; Djðj ¼ 1;2;3Þ are the electric fields and the electric dis-
placements; eij; wjði; j ¼ 1;2;3Þ are the phonon and phason
strains; C11; C12; C13; C33; C44; C66 are elastic constants in the pho-
non field, C66 ¼ C11�C12

2 ; K1; K2 are elastic constants in the phason
field; Riði ¼ 1;2;3Þ are phonon–phason coupling elastic constants;
e1ij; e2ijði ¼ 1;3; j ¼ 1;3;5Þ are piezoelectric coefficients; 211; 233 are
dielectric coefficients.

The strain–displacement and electric field–electric potential
relations are given by

eij ¼ 1
2
ð@ jui þ @iujÞ; wj ¼ @jv ; Ej ¼ �@ j/; ði; j ¼ 1;2;3Þ; ð2Þ

where ui and v denote the displacements of phonon field and pha-
son field, u is the electric potential. Here we have used the tensor
notation and @jui ¼ @ui

@xj
, the same hereafter.

In the absence of body force and electric charge density, the
equilibrium equations are

@1r11 þ @2r12 þ @3r13 ¼ 0;
@1r21 þ @2r22 þ @3r23 ¼ 0;
@1r31 þ @2r32 þ @3r33 ¼ 0;
@1H1 þ @2H2 þ @3H3 ¼ 0;
@1D1 þ @2D2 þ @3D3 ¼ 0:

ð3Þ

For the anti-plane shear problem in which all field variables are
independent of x3. In this case, we have the following deformation
geometrical equations

@3ui ¼ 0; @3v ¼ 0; @3rij ¼ 0; @3Hi ¼ 0; @3Di ¼ 0; i; j ¼ 1;2;3 ð4Þ
Substitution Eq. (4) into Eqs. (1)–(3) leads to one is a plane elas-

ticity problem of general crystals, which can be solved by the route
of linear elastic theory [17]. We do not discuss it here. And the
other is an anti-plane phonon–phason coupling elasticity problem
as follows:

r23 ¼ r32 ¼ 2C44e32 þ R3w2 � e115E2;

r13 ¼ r31 ¼ 2C44e31 þ R3w1 � e115E1;

H1 ¼ 2R3e31 þ K2w1 � e215E1;

H2 ¼ 2R3e32 þ K2w2 � e215E2;

D1 ¼ 2e115e31 þ e215w1 þ 211E1;

D2 ¼ 2e115e32 þ e215w2 þ 211E2;

@1r31 þ @2r32 ¼ 0;
@1H1 þ @2H2 ¼ 0;
@1D1 þ @2D2 ¼ 0;

e3j ¼ ej3 ¼ 1
2
@ ju3; wj ¼ @ jv ; Ej ¼ �@j/; j ¼ 1;2:

ð5Þ

From Eq. (5), one obtains

C44r2u3 þ R3r2v þ e115r2/ ¼ 0;

R3r2u3 þ K2r2v þ e215r2/ ¼ 0;

e115r2u3 þ e215r2v � 211r2/ ¼ 0;

ð6Þ

wherer2 ¼ @2

@x21
þ @2

@x22
is the two dimensional Laplace operator. Under

the condition of
C44 R3 e115
R3 K2 e215
e115 e215 �211

������
������– 0, Eq. (6) can be written as

r2u3 ¼ 0; r2v ¼ 0; r2/ ¼ 0: ð7Þ
According to the theory of complex variable function, u3; v and

/ can be represented as the real part or the imaginary part of three
analytic functions uiðzÞði ¼ 1;2;3Þ. We assume that

u3 ¼ Reu1ðzÞ; v ¼ Reu2ðzÞ; / ¼ Reu3ðzÞ; ð8Þ

where z ¼ x1 þ ix2; i ¼
ffiffiffiffiffiffiffi
�1

p
.

3. Solution of elastic field

Considering a problem about a circular hole with a crack along
the quasi-periodic direction (x3 direction) in a 1D hexagonal QCs. R
is the circle radius and L is crack length. The solid is subjected to
uniform remote anti-plane shear and in-plane electric field load-
ing, as shown in Fig. 1.
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