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a b s t r a c t

Sophisticated data of the experimental DCV (discharging/charging voltage) of a lithium-ion battery is
required for high-accuracy SOC (state-of-charge) estimation algorithms based on the state-space ECM
(electrical circuit model) in BMSs (battery management systems). However, when sensing noisy DCV
signals, erroneous SOC estimation (which results in low BMS performance) is inevitable. Therefore, this
manuscript describes the design and implementation of a DWT (discrete wavelet transform)-based
denoising technique for DCV signals. The steps for denoising a noisy DCV measurement in the proposed
approach are as follows. First, using MRA (multi-resolution analysis), the noise-riding DCV signal is
decomposed into different frequency sub-bands (low- and high-frequency components, An and Dn).
Specifically, signal processing of the high frequency component Dn that focuses on a short-time interval is
necessary to reduce noise in the DCV measurement. Second, a hard-thresholding-based denoising rule is
applied to adjust the wavelet coefficients of the DWT to achieve a clear separation between the signal
and the noise. Third, the desired de-noised DCV signal is reconstructed by taking the IDWT (inverse
discrete wavelet transform) of the filtered detailed coefficients. Finally, this signal is sent to the ECM-
based SOC estimation algorithm using an EKF (extended Kalman filter). Experimental results indicate
the robustness of the proposed approach for reliable SOC estimation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rechargeable lithium-ion batteries have become preferable in
portable devices, power electronics, and renewable energy storage
applications [1e3]. Lithium-ion batteries have been increasingly
recognized as a promising solution for electric-powered trans-
portation such as EVs (electric vehicles) and HEVs (hybrid electric
vehicles) because of their high specific energy densities, long cycle
lives, and low self-discharge [4e6]. With the increased interest in
EVs and HEVs, the need for accurate and reliable knowledge to
guarantee the overall system performance, namely a BMS (battery
management system), has also significantly increased [7e10].
Failure to use awell-designed BMS, leading to over-discharging and
over-charging conditions, may cause permanent internal degrada-
tion [10]. Thus, numerous studies have investigated the design of an
improved BMS that overcomes the above weaknesses, in particular,

focusing on SOC (state-of-charge), which is considered a key factor
in BMSs for supporting optimal battery performance and safety in
EVs and HEVs [11e13]. Precise SOC information is critical in prac-
tical applications in which it is necessary to determine both how
long the battery will last when predicting a reliable operating range
and when to stop discharging and charging to prevent the batteries
in EVs and HEVs from over-discharging and over-charging [14,15].

In recent years, much research has been devoted to developing
more accurate methods of SOC estimation [16e24]. Specifically,
adaptive methods such as the EKF (extended Kalman filter) [16e20]
and other observed-based approaches [21e24] by means of non-
linear ECM (equivalent circuit modeling) have been extensively
studied because of their advantages of being closed-loop and online,
and having the dynamic SOC estimation error range available. In
general, the state-spaceECMstructure isused todescribe thebattery
voltage behavior; it is applied in adaptive methods for SOC estima-
tion. This structure is generally composed of the OCV (open-circuit
voltage) and RC (resistance-capacitance) networks (such as first-,
second-, and third-order RC), which capture the dynamic IeV
characteristics of a lithium-ion battery. Through physical
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parameterization of the ECM, the electrochemical behavior of a
lithium-ion battery can be better understood. In the model-based
SOC estimation, this behavior is considered the estimated terminal
voltage.

When various typical discharging/charging pulse currents are
applied to the batteries, experimental voltages are measured. As
previously mentioned, the EKF and other observer-based methods
are known to yield an optimum adaptive algorithm based on
recursive estimation. Thus, to achieve high-accuracy SOC estima-
tion, there must be little voltage difference between the mea-
surement and the estimated result, under the assumption of the
correctness of the ECM. Elaborated data regarding the experi-
mental DCV (discharging/charging voltage) of a lithium-ion bat-
tery is required for comparison with voltage data estimated by
adaptive methods. However, there is the possibility of unexpected
and instantaneous sensing of noise in the BMS. It is inevitable,
therefore, that an uncorrected battery voltage is measured and
applied to the BMS. In spite of using an optimum SOC estimation
algorithm, low BMS performance (such as an increased SOC esti-
mation error and long run-time operation) is, therefore, un-
avoidable. To solve this problem, in this work, an innovative
approach to one of the key technologies of the BMS is investigated.
Unfortunately, thus far, no comprehensive and qualitative meth-
odologies dealing with the aforementioned issue have been pre-
sented in the literature.

This study introduces a new approach to the design and
implementation of DWT (discrete wavelet transform)-based
denoising of DCV signals. The DWT has been widely considered as
an effective mathematical function that is capable of analyzing a
DCV signal with non-stationary and transient phenomena in
accordance with scale and resolution [25e30]. Specifically, a
representative characteristic of the DWT is MRA (multi-resolution
analysis) with a precise function for both time and frequency
localization. Greater resolution in time is provided by the high-
frequency components of a signal, and a greater resolution in
frequency is provided by the low-frequency components. How-
ever, unexpected and instantaneous noise occurs in the DCV
signal, creating high frequency components in the spectrum of the
signal. Then, although this noise-riding DCV signal is decomposed
by the MRA, it is absolutely certain that the high frequency com-
ponents still contain noise. Fortunately, the DWT-based denoising
technique proposed in this study enables us to obtain DCV signals
that have no noise. The concept of wavelet denoising was intro-
duced by Donoho and Johnstone [42], and a wide variety of related
research methods and techniques have been investigated in many

different fields [31e36]. The proposed procedure for denoising a
noisy DCV signal is as follows. First, the noise-riding DCV signal is
decomposed into different frequency sub-bands (low- and high-
frequency components, An and Dn). Specifically, to eliminate
noise from the DCV, the signal processing of the high frequency
component Dn (which concentrates on short-time intervals) is
essential. Second, a suitable hard thresholding-based denoising
technique is implemented to adjust the wavelet coefficients of the
DWT so as to minimize the noise effect from the signal. Third, the
desired de-noised DCV signal is reconstructed by taking the IDWT
(inverse DWT) of the filtered coefficients. For reference, the order
3 Daubechies wavelet (dB3) [37,38] with scale 5 is properly used
as the mother wavelet in decomposition and reconstruction pro-
cesses of the DWT. In addition, to determine the threshold value in
hard-thresholding, VisuShrink (which performs visually calibrated
adaptive smoothing on noisy DCV signals) is used. Finally, the
recently de-noised DCV signal is applied to the ECM-based SOC
estimation algorithm using the EKF. Consequently, this proposed
study makes an effort to provide a reliable estimation of the SOC.
This approach has been validated by extensive experimental re-
sults conducted on prismatic 18650 lithium-ion batteries that had
a rated capacity of 1.3 Ah produced by Samsung SDI [39].

The remainder of this manuscript is organized into six sections,
including this introduction section. In Section 2, a review of the
theoretical background of classical DWT is simply presented. Sec-
tion 3 shows the experimental test setup used to perform dis-
charging/charging of lithium-ion batteries and to obtain noise-
riding DCV signals. The proposed DWT-based MRA (decomposi-
tion and reconstruction process) and denoising technique is
described in the following section; in this section, a basic intro-
duction to wavelet-denoising techniques is also provided. Section 5
presents high-accuracy model-based SOC estimation using the EKF.
Then, to compare the SOC estimation accuracy with and without
the proposed approach, the SOC estimation results are compared
with those of ampere-hour counting. In the final section, some
conclusions and final remarks are given.

2. Basic concept of the DWT

The DWT [25e30,43] has been widely researched in new
mathematical approaches that decompose a time-domain signal
into different frequency groups, and provides effective methods for
analyzing non-stationary signals. The DWT is a function of
j(t) 2 L2(R) with zero basis [40e42] and can be defined as

Nomenclature

EV/HEV electric vehicle/hybrid electric vehicle
BMS management system
SOC state-of-charge
EKF extended Kalman filter
ECM equivalent circuit model
DCV discharging/charging voltage
DWT discrete wavelet transform
MRA multi-resolution analysis
An approximation component
Dn detail component
fj,k(t) scaling function of the signal at level j
jj,k(t) wavelet function of the signal at level j
aj,k approximation coefficients of the signal at level j
dj,k detail coefficients of the signal at level j

h(n) filter coefficient of the low-pass filters
g(n) filter coefficient of the high-pass filters
fsðf 1 sec

s Þ sampling frequency (based on the sampling period of
1 s)

f ðf 1 secÞ supply frequency (based on the sampling period of 1 s)
n (n1sec) decomposition level (based on the sampling period of

1 s)
dT threshold valuebs noise variance related to the detailed coefficients
MAD median absolute deviation
Nd length of the vector of the DWT coefficients
sx standard deviation of the original signal
se standard deviation of the noise
SNR signal-to-noise ratio
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