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a b s t r a c t

This paper presents a new algorithm for the efficient evaluation of Jk-integrals for cracks between bonded
homogeneous and isotropic materials using the boundary element crack shape sensitivities (BECSS). The
flexibility of this novel method allows for analysis of both curved and straight interface cracks. In contrast
to the available algorithms, the present method does not require stress analysis at a series of internal
points around the crack or employment of an auxiliary equation. For an interface crack, the J1-integral
is the strain energy release rate (SERR) or the derivative of the total potential energy with respect to
the crack length extension. Although the J2-integral shows an oscillatory type behaviour and is non-
existent at the crack tip, it can also be evaluated by direct differentiation of the structural response. It
is well-known that a bimaterial interface crack induces both opening and shearing behaviour even for
a single mode loading. Here it is shown that the computed Jk can be used to decouple and estimate
the stress intensity factors (SIFs). Here, three example problems are analysed and their Jk values are pre-
sented which are in excellent agreement with the corresponding analytical results. Each case includes the
contribution to J2 by the jump of displacement derivatives across the interface and the strain energy den-
sity discontinuity on the crack surfaces and interface region.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials have endless applications in a variety of
industries including aerospace, automobile, naval and electronics.
In a composite structure consisting of two or more materials with
various properties such as fibre reinforced laminated composites
or multilayered electronic devices, failure is more likely to initiate
at interfaces. Williams [1] was the first scientist to discover that
the stress field along an interface crack between two dissimilar
elastic materials is not only singular, but also has an oscillatory

behaviour of type r�
1
2þie where r is the radial distance from the

crack tip and e is a bimaterial constant. This shows that when r
approaches zero, the displacements and stresses change sign
indefinitely and there is an interpenetration of two crack faces
near the crack tip which is not physically possible. As suggested
by several researchers, for most practical crack sizes and materials,
this zone of contact is extremely small and typically of the order of
a few nanometers. In linear elastic interfacial fracture mechanics
(LEIFM), the overlap between crack faces at the crack tip is usually
ignored. However, an asymptotic field characterizing the stress and
strain is usually employed in the vicinity of the crack tip.

William’s work was followed by the studies carried out by
Rice and Sih [2], Erdogan [3,4] and England [5]. Following, their
pioneering research, a variety of algorithms have been developed
based on LEIFM and in conjunction with the boundary ele-
ment method (BEM), finite element method (FEM) or analytical
method. These methods are based on the virtual crack exten-
sion, M-integral, interaction integral, complex variable, numerical
manifold, element free Galerkin, extended finite element (XFEM)
and analytical mode separation [6–15].

At present, the most common method used in industry and by
academia for solving fracture mechanics of homogeneous struc-
tures is the J1-integral [16,17] in conjunction with BEM or FEM.
The J1-integral is the Rice’s path independent integral. This method
was first developed by Rice to characterize fractures for two-
dimensional structures with linear or nonlinear elastic material
behaviour. Although the J1-integral with BEM reduces computa-
tional time, it still requires time-consuming stress analysis at a
series of internal points around the crack.

For elastic problems, the J1-integral is the SERR per unit of the
crack extension. In conjunction with the FEM or BEM, it is possible
to directly evaluate the sensitivities of the total strain energy
where the crack length is being treated as the shape variable.
Ref. [18] presents the novel application of the BECSS for the evalu-
ation of the J1-integral in anisotropic materials where the crack of
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arbitrary geometric shape, straight or curved, was treated as the
shape design variable. Since fracture mechanics parameters were
evaluated by direct differentiation of the structural response, the
BECSS method is computationally more accurate and efficient than
the J1-integral method.

For fracture of in-plane mixed mode cracks in homogeneous
structures, the J1-integral is related to a combination of SIF values,
due to the different fracture modes. The decomposition method is
the most popular technique for the evaluation of SIFs [19]. An
alternative for decoupling the SIFs is to evaluate the J2-integral
which not only involves the computation of stresses and strains
at a series of internal points around the crack but also the evalua-
tion of highly singular integrals over the crack surfaces. In Ref. [20]
this deficiency is overcome by direct evaluation of J2 using BECSS
where a small region around the crack tip is treated as the shape
design variable. It is shown that the derivative of the total potential
energy with respect to the transverse direction of the crack is not
the J2-integral. However, by addition of an integral, involving the
strain energy density discontinuity, to this derivative the
J2-integral can be efficiently evaluated. That study focused on
isotropic and homogeneous materials. For the sake of validation
the selected case studies with known analytical solutions were
employed where for each crack shape and loading condition, the
corresponding values of J1, J2 and also the contribution to J2 from
the strain energy density discontinuity were presented.

In Ref. [21], using the BECSS of multi-region domains, coupled
with an optimization algorithm and an automatic mesh generator,
the crack kink angle and crack propagation path in anisotropic and
homogeneous elastic solids, based on the maximum SERR criterion,
were predicted. In contrast to the J1-integral method, the computa-
tion of stresses and strains at a series of internal points during the
automatic incremental crack procedure was not required. There-
fore, the method was more accurate and efficient. The prediction
of the crack propagation path of a central slant crack in a titanium
plate subject to tension was in very good agreement with the cor-
responding experimental results published elsewhere. The findings
confirmed the simplicity, accuracy and flexibility of the method
which can be applied to both curved and straight cracks.

Here, the Jk-integrals for interface cracks between bonded
homogeneous, isotropic and dissimilar materials are obtained
using the BECSS. It is demonstrated how a good estimation of SIFs

can be made using the computed Jk values. Three example prob-
lems with straight or curved interface cracks are analysed and their
corresponding Jk values are presented. The results include the con-
tribution to J2 from the jump of displacement derivatives or strain
across the interface and also the strain energy density discontinu-
ity on the crack surfaces and interface region.

2. Review of the boundary element crack shape sensitivity
analysis

The BEM is based on the unit load solutions in an infinite body,
known as the fundamental solutions; used with the reciprocal
work theorem and appropriate limit operations. The Boundary
Integral Equation (BIE) of the BEM for homogeneous and isotropic
materials is an integral constraint equation relating boundary trac-
tions (tj) and boundary displacements (uj) and it may be written as
[22]

CijujðPÞ þ
Z

TijðP;QÞujðQÞdsðQÞ ¼
Z

UijðP;QÞtjðQÞdsðQÞ i; j ¼ 1;2

ð1Þ
Pðf1; f2Þ and Q(x1,x2) are the load and field points, respectively.

Following the numerical integration, BIE can then be reduced to a
set of simultaneous linear equations and be solved. The constant Cij
depends on the local geometry of the boundary at P, whether it is
smooth or sharp. For a general crack problem involving a homoge-
neous body with mixed mode deformation or an interface crack
between bonded dissimilar materials, the domain may be divided
into several subregions in which the crack faces coincide with
the boundaries of the subregions [23]. The BIE can then be
employed for each subregion (L), in turn. Then appropriate conti-
nuity and equilibrium conditions are applied at the common sub-
region interface before the linear algebraic equations are solved.

Shape sensitivity analysis (SSA) is the calculation of quantita-
tive information on how the response of a structure is affected
by changes in the variables that define its shape. SSA is the funda-
mental requirement for shape optimization. The BEM, being a sur-
face oriented technique, is well suited for shape and topology
optimization problems, in particular for SSA [24–26]. In order to
obtain sensitivities of the structural response with respect to a

Nomenclature

a half crack length or crack half chord length
a1, a2 local coordinates at the crack tip
Cjk (P) limiting value of the surface integral of Tjk (P,Q)
E Young’s modulus
Fi shape functions for the continuous quadratic elements
fi shape functions for the discontinuous quadratic ele-

ments
EP potential energy
G shear modulus
ISc integral involving strain energy density and strain dis-

continuities
Jk (k = 1,2), J-integral
K1, K2 modes 1 and 2 stress intensity factors, respectively
Ni (i = 1,3) geometrical nodes
Nci (i = 1,3) collocation nodes
n1, n2 direction cosines of the unit outward normal vector to

the surface of the elastic body
P load point at the surface of the elastic domain
Q field point at the surface of the elastic domain
r small radial distance from the crack tip
R radius of the circular inclusion

S domain boundary
Tjk (P,Q) jth component of the traction vector at point Q due to a

unit point load in the kth direction at P
tj traction vector
Ujk jth component of the displacement vector at point Q due

to a unit point load in the kth direction at P
uj displacement vector
W strain energy density
xi rectangular Cartesian coordinates (Global)
e bimaterial constant
m Poisson’s ratio
h0 half the central crack angle
rij stress tensor
rx0; ry0 normal stress components in the x- and y-directions,

respectively
g ratio E1/E2
s0 shear stress component
wi

3�v i
1þv i

plane stress, 3� 4v i plane strain
f1; f2 coordinates of load point
f natural coordinate
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