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a b s t r a c t

A deregulated market environment in power industries offers utilities or load serving entities the chance
to make profit by pursuing a suitable operational strategy. However, the volatility of the real-time market
clearing price raises a price risk issue because the load serving entity sells electricity to customers at a
relatively frozen retail rate. One method to hedge price risk is to implement various dynamic pricing
schemes in the retail sector in order to reflect the volatility of the real-time market clearing price to the
retail rate. This paper presents several analyses for designing one such pricing scheme, namely critical
peak pricing for a profit-maximizing load serving entity. Specifically, how the parameters of critical peak
pricing affect profit based on the price responsiveness model of customers is analyzed. In this process, a
method for solving the events scheduling problem is used as a tool for the analyses. Furthermore, we
offer intuitive guidelines and rules for selecting those parameters that maximize the profit of the load
serving entity. Finally, the suitability and practicality of the presented analyses are verified by numerical
simulations with forecasted data on the real-time market clearing price and demand.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Utilities, or load serving entities (LSEs), are entities that supply
electricity to retail customers. The traditional role of them was
regarded as reliably serving contracted customers based on the
secure operation of the transmission network [1]. Accordingly,
demand response (DR) programs, which enable customers to
participate in the operation of the power system by changing their
consumption pattern, aim to enhance the efficiency of the system
operation by reducing peak demand [2]. Deregulation in power
industries, however, has allowed DR programs to be implemented
in an electricity market setting [3] in such a way that market par-
ticipants may take appropriate actions or responsibilities [4]. The
responsibilities of LSEs include offering customers a variety of
products and services at time-varying rates as well as support for
necessary technologies [4]. Thus, in a deregulated environment,
LSEs can establish profit maximization as their main goal in return
for their efforts to provide benefits to customers [5].

A wholesale real-time market determines prices for a specified
time interval (e.g., every 5 min) based on the generation cost and
demand. In a market environment, an LSE is able to profit by pur-
chasing electricity at this real-time market clearing price (RTMCP)
and then reselling it to customers at its own retail rate. The greatest
risk to the profits of the LSE thus lies in the contrast between the
volatility of RTMCPs and the relatively fixed retail rate [6]. As such,
an LSE is naturally exposed to price risk in a deregulatedmarket [7].
Indeed, when the RTMCP is skyrocketing, the loss suffered by an
LSE becomes significant because of the large gap between the
RTMCP and the retail price. The bankruptcy of Pacific Gas and
Electric Company (PG&E), which is an LSE that provides natural gas
and electricity in the United States, during the California electricity
crisis is clear evidence that price risk affects the survival of LSEs and
compromises the secure operation of power systems [8].

There are several risk hedging strategies that may be employed
to address this problem. One method is to take advantage of de-
rivatives, such as options and futures, in the financial market [9].
However, as electricity prices feature extreme variations and sea-
sonal autocorrelation, these instruments may not be as effective as
they are in other commodity markets [10]. The other method is to
form long-term supply contracts with generation companies
through the forward or bilateral markets [11]. Some have proposed* Corresponding author. Tel.: þ82 2 880 9144; fax: þ82 2 885 4958.
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a decision-making framework for the LSE based on stochastic
programming where the optimal level of procurement from the
forward and pool markets would be determined in such a way as to
maximize profit for a specified risk [12]. Another method is to
reflect the volatility of the RTMCP to the retail rate through a dy-
namic pricing scheme as a type of DR program [13], which is the
subject discussed in this study.

The dynamic pricing schemes include real-time pricing (RTP), in
which fluctuating prices that reflect the RTMCP are charged to
customers; time-of-use (TOU), in which different blocks of time
carry different rates; and critical peak pricing (CPP), which entails
charging higher rates when the RTMCP is high or a contingency
situation occurs [2]. Regardless of which scheme is employed, its
design will play a crucial role in hedging against LSEs' price risks
and thereby their ability to maximize their profits. Accordingly,
there have been many studies on the methodologies used to design
dynamic pricing schemes for the profit maximization. In Ref. [14], a
customer price response model is developed and an agent-based
iterative learning method is used to determine the optimal day-
ahead real-time prices based on the proposed response model. In
Ref. [5], the optimal day-ahead real-time prices are determined
through an optimization process that uses nonlinear programming;
additionally, this model takes various constraints into account, such
as the customers' responses to prices, the minimum and maximum
demand limits, and the operating conditions of a distribution
network. The interaction between the LSE and their customers,
who are optimizing their own objectives, is explored in Ref. [15],
where the real-time prices during a scheduling horizon are ob-
tained by solving the profit maximization problem with a
simulated-annealing-based price control algorithm. Another study,
which assumes a deregulated market environment similar to that
in Spain, optimally designs various types of TOU schemes with two,

three, and six prices through quadratic nonlinear programming
[16]. The study in Ref. [17] proposes a procedure for designing the
rates and duration of TOU blocks and finds that a properly designed
TOU scheme can improve both the profit of a distribution company
and the saving of customers. Furthermore, in Ref. [18], it is shown
that both the provider and the consumers may benefit from TOU
pricing. Ref. [18] also details the conditions under which this
winewin situation may occur and outlines how the optimal TOU
rate may be determined. For the design of CPP, a recent research
proposes a method to determine the optimal peak rate simulta-
neously with the optimal triggering schedule of critical events
considering variable wind power generation [19].

Due to many valuable findings in the previous works, several
design methods of dynamic pricing schemes are available for the
LSE maximizing the profit. Among the pricing schemes, CPP has
several advantages over RTP and TOU. For instance, although RTP is
the most effective at hedging against price risk, its complexity
resulting from the need for continuous response prevents small
residential customers from participating in a RTP program [20].
TOU is easy to implement because there are only a few block rates
announced to customers in advance; its main detraction lies in its
inability to deal with sudden increases in the RTMCP. Thus, CPP
provides a reasonable alternative to RTP for residential customers
and can be used in conjunction with TOU to dynamically apply the
peak price in a critical situation [20]. Despite its clear advantages
and relevancy, especially in light of the current developing status of
smart grids, CPP has received far less attention than either RTP or
TOU in the literature. Furthermore, there have been few studies
that examined how the parameters in CPP other than the peak rate
affect profit of the LSEs, and even fewer that employed an analytical
approach to factor in consumer responses. Consequently, this study
presents several such analyses. First, we analyze how the CPP

Nomenclature

Variables
Sk net benefit of customers in period k
B(qk) benefit of customers from consuming
qk amount of electricity in period k
Rk revenue of a load serving entity in period k
Ck cost of a load serving entity in period k
PIk profit index in period k
qk consumption of customers in period k
q0,k consumption of customers in period k when a critical

event is not triggered
qCPP,k consumption of customers in period k when a critical

event is triggered
qRTP,k consumption of customers in period k under a real-

time pricing scheme
rk electricity price in period k
rCPP,k price rate of a critical peak pricing scheme in period k
rbase base rate of a critical peak pricing scheme
rpeak peak rate of a critical peak pricing scheme
r*peak;k optimal peak rate of the critical peak pricing scheme in

period k
r*peak optimal peak rate of the critical peak pricing scheme

throughout the time periods [1,N]
rRTMCP,k real-time market clearing price in period k
rRTP,k price rate of a real-time pricing scheme in period k
rU price rate of a uniform pricing scheme
ak design parameter of real-time pricing in period k
bk price elasticity of customers in period k

uk binary decision variable for the critical event in period
k

NCPP maximum number of critical events
Nmin
CPP minimum number of critical events

DCPP maximum event duration
HCPP maximum total event time
Dk minimum interval between successive critical events
k* element of the optimal solution to the events

scheduling problem
OS* optimal solution to the events scheduling problem
N scheduling time horizon of the events scheduling

problem
x variable to be forecasted in autoregressive moving

average model
c, f, q constants in the autoregressive moving average model
ε zero-mean white noise

List of abbreviations
ANN artificial neural network
AR autoregressive
ARIMA autoregressive integrated moving average
ARMA autoregressive moving average
CPP critical peak pricing
DR demand response
LSE load serving entity
PG&E Pacific Gas and Electric Company
PJM Pennsylvania-New JerseyeMaryland Interconnection
RTMCP real-time market clearing price
RTP real-time pricing
TOU time-of-use
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