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a b s t r a c t

In this paper, a general method is presented for evaluating the interaction between multiple piezoelectric
inclusions and a nearby crack in a non-piezoelectric elastic matrix. The elastic matrix is subjected to a
uniform far field in-plane tension and all inclusions are subjected to an out-of-plane uniform electric
field. The crack in the elastic matrix is treated as a continuous distribution of edge dislocations, and then
the solution of a unit edge dislocation interacting with multiple piezoelectric inclusions in an elastic
medium is derived as the Green function. The problem is formulated into a set of singular integral equa-
tions which are solved by a numerical method, and the stress intensity factors (SIFs) at the crack are
obtained in terms of the dislocation density functions evaluated from the singular integral equations.
Numerical examples are given for a few typical arrays of piezoelectric inclusions with various material
properties and geometric parameters. The results indicate that the applied uniform electric-field plays
an important role in the interaction between multiple piezoelectric inclusions and the matrix crack.,
Moreover, it is found that the influences of ‘softer’ piezoelectric inclusions on the SIFs are quite different
from that of ‘harder’ piezoelectric inclusions, and the SIFs at the crack tip are greatly affected by the
geometry and array of piezoelectric inclusions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber-reinforced composites are widely used in engineering
fields such as aerospace structures, submersible vehicles and off-
shore structures due to their relatively high strength and stiffness
and low density. However fibers (inclusions) introduced as
strengthening material phases destroy the homogeneity of the
matrix and lead to local stress concentration around the inclusions.
Meanwhile, unavoidable defects such as micro-cracks in the matrix
may worsen the performance of the composites. Thus it is neces-
sary to study the interaction between inclusions and matrix cracks
for developing high performance composites. The inclusion-crack-
matrix interaction problems have received a considerable atten-
tion recently. Earlier researchers, such as Tamate [1], Atkinson
[2], Erdogan et al. [3], and Hsu and Shivakumar [4] analytically
investigated the problem of a circular inclusion interacting with
a crack in elastic matrix. Then Erdogan and Gupta [5], Bhargava
and Bhargava [6], Isida and Noguchi [7], Wu and Chen [8], Kim

and Sudak [9], Liu and Ru [10] studied more complicated cases
with multiple cracks, an elliptical inclusion or a three-phase circu-
lar inclusion. Recently, Li et al. [11] studied a screw dislocation
interacting with a nanoscale circular inclusion and a model III
crack by the complex potential function method. Numerical
approaches such as finite element method (FEM) [12–14] and
boundary element method (BEM) [15–17] were also developed to
deal with more general situations with increasing technical com-
plexity. In addition, the method of distributed dislocation is also
an effective tool for a crack contained in a matrix [18–21], and
alternatively a crack can also be simulated by body force method
[22].

Recently there has been growing interest in ‘smart materials’
due to their intrinsic electromechanical coupling behavior. In gen-
eral, piezoelectric fibers, based on ferroelectric crystals such as lead
zirconate titanate (PZT) and barium titanate (BaTiO3), are widely
employed as electromechanical sensors, transducers and actuators
[23,24] in smart composites. Because of practical relevance of pie-
zoelectric composites for engineering applications, electro-elastic
analysis of such materials has become one of the most popular
research topics. For example, Tan and Tong [25] proposed two
micro-electromechanics models (a rectangle model and a rectan-
gle-cylinder model) to predict elastic, piezoelectric and dielectric
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constants of piezoelectric fiber-reinforced composite (PFRC) under
single load or multiple loads. Yang and Gao [26] studied electro-
elastic fields in an infinite matrix with N coated piezoelectric inclu-
sions based on the complex variable method. Dunn and Wienecke
[27] studied electro-elastic field inside and around inclusions and
inhomogeneities embedded in a transversely isotropic piezoelec-
tric solids using Eshelby’s approach. It is noticed that most existing
research works are restricted to the problems of piezoelectric
inclusions in the absence of any cracks in the matrix. Practically,
however, matrix cracking may also exist in piezoelectric compos-
ites during manufacturing process or under applied tensile
mechanical stress or electrical loading. Little work has been done
on piezoelectric inclusions interacting with a matrix crack, except
Xiao and Bai [28] who provided a solution for a single piezoelectric
inclusion interacting with a matrix crack. In many practical prob-
lems, multiple piezoelectric fibers are used as sensors or actuators
in ‘smart materials’. Although the single inclusion model is ade-
quate for sparsely arrayed fibers, it is certainly inadequate densely
arrayed fibers. The interaction between multiple fibers and a
matrix crack represents a significant research topic of practical
relevance.

The purpose of this work is to present a solution to the problem
of closely arrayed multiple piezoelectric inclusions interacting
with a near-by crack in a non-piezoeletric elastic matrix. In Sec-
tion 2, a procedure is used to decompose the problem into two
sub-problems. Section 3 solves the two sub-problems respectively
and then provides a solution of the original problem. Some numer-
ical results are given in Section 4 to show the influence of the
applied electric field, array of inclusions, geometric parameters
and material properties on the SIFs at the matrix crack. Main con-
clusions are summarized in Section 5.

2. Problem description

In a rectangular coordinate system xj (j = 1,2,3), we consider an
infinite isotropic elastic matrix containing N parallel cylindrical
piezoelectric inclusions (fibers) aligned along the x3 direction. A
through-x3 direction matrix crack of length 2c along the x1-axis
locates along the x1-axis and is centered at the origin of the x1–x2

plane, as shown in Fig. 1. It is assumed that the elastic matrix is iso-
tropic, while the piezoelectric inclusions are transversely isotropic
and polarized along the symmetry axis x3. The matrix is subjected
to far-field mechanical stresses and the inclusions are loaded by a
uniform electric field E13 in the x3 direction. Additionally, all inclu-
sions are assumed to be perfectly bounded to the matrix. The
cross-section of the system is shown in Fig. 1, where the regions
occupied by the matrix and the inclusions are denoted by sub-
scripts ‘m’ and ‘f’, respectively, the shear modulus and the Poisson’s
ratio of the elastic matrix and the inclusions are lm and lf, and mm

and mf, respectively, and Rr (r = 1, 2, 3, . . ., N) represents the radius
of the rth inclusion lr.

As the matrix is pure elastic material, there is no mechanical-
electric coupling inside the matrix. By employing the superposition
principle of elasticity [29], the solution of the present problem can
be obtained as the sum of two sub-problems, as shown in Fig. 1.
The sub-problem I shown in Fig. 2 is the piezoelectric inclusions
embedded in the elastic matrix without the matrix crack. For the
sub-problem II shown in Fig. 3, the only external loads are the
crack surface tractions which are equal in magnitude and opposite
in sign to the stresses obtained in the sub-problem I along the
crack faces. The superposition of sub-problem I and sub-problem
II thus gives the solution of the original problem.

3. Solution procedure

The sub-problem I has been solved in ref. [30]. In the matrix (an
infinite plane with N circular holes), the complex potentials can be
written in the form of power series
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where aðrÞ�k and bðrÞ�k are unknown coefficients, zr0 is the centre of the
r-th inclusion, R stands for a reference length which may be defined
as R = min{R1, R2, R3, . . ., RN}, and Bi, Ci (i = 1, 2) are related to the
applied uniform stresses at infinity:

B1 ¼ ðr111 þ r122Þ=4;C1 ¼ 0;B2 ¼ ðr122 � r111Þ=2;C2 ¼ r112: ð2Þ

On the other hand, the complex potentials inside the inclusions
lp can be expressed as
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Fig. 1. The interaction between multiple circular piezoelectric inclusions and a
crack in an infinite elastic matrix.
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Fig. 2. Sub-problem I.
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Fig. 3. Sub-problem II.
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