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a b s t r a c t

Based on the assumption that the physical fields close to the V-notch vertex are expressed by the series
asymptotic expansions, the evaluation of singularity exponents for piezoelectric V-notches is turned into
solving the characteristic values of ordinary differential equations under given boundary conditions,
which are a set of equations with variable coefficients and solved by the interpolating matrix method
developed by part of the authors before. The singularity analysis for V-notches under in plane and out
of plane conditions is taken into account. Numerical results show that all the singularity exponents
and the characteristic angular functions can be evaluated synchronously without the need of solving
the transcendental equations iteratively. The present method is not only suitable for the singularity anal-
ysis of V-notches, but also for cracks and interface ends, without encountering the problem of ill-posed
equations when the complex potential function method for the singularity analysis of V-notches is
degenerated to analyze the singularity of cracks.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The piezoelectric materials have been widely used in modern
technical areas such as smart structures, mechatronics and micro-
system technologies, where they are used as actuators or sensors.
The V-notch configurations are often encountered in piezoelectric
structures, such as the interfacial end of piezoelectric laminated
plates [1–3], and the interfacial crack between the metal and pie-
zoelectric material [4,5]. Due to the sharp changing of the geome-
try and/or the material property, the singular electro-mechanical
field will appear at the apex of a piezoelectric V-notch. The geo-
metrical and material singularities submitted to electrical and
mechanical fields will cause the crack initiation and fatigue crack
propagation [6,7]. The safety of the piezoelectric engineering struc-
tures is highly affected by the singular stress field close to the ver-
tex of the V-notch [8,9]. The failure assessment requires efficient
analytical and numerical techniques in order to determine this
stress field close to the V-notched piezoelectric structures.

As in the case of V-notches, the singularity at crack tips and
interfacial ends are paid extensive attentions by the researchers.
The interfacial crack in piezoelectric materials was investigated

using the complex variable function method [10,11]. The influence
of the electro-elastic interactions on the stress intensity factor of
an interfacial crack was studied by Narita and Shindo [12]. The sin-
gularity analysis for edge-cracked piezoelectric material was con-
firmed by the Hamiltonian transformation [13]. The mechanical
strain energy release rate for the crack in piezoelectric materials
was given out by the Mellin transform method [14,15].

In comparison with classical fracture mechanics, the singular
stress field at the tip of a V-notch is more complicated to deter-
mine. Nevertheless, the electro-elastic singularity analysis for the
crack offers a fruitful reference way to investigate the singularity
for the V-notch case. A semi-analytical technique to analyze 2-D
cracks and V-notches existing in piezoelectric composites was pro-
posed based on the scaled boundary finite element method [16].
The stress intensity factor of an interfacial corner between piezo-
electric bi-materials was derived by the Stroh formalism [17,18].
The asymptotic behavior at piezoelectric material interface corner
configurations was described by combing the eigenfunction expan-
sions with the regular finite element method [19]. The singular
electro-elastic field of the piezoelectric material near the V-notch
tip was studied by the boundary element method [20]. The singu-
lar characteristic solutions of a piezoelectric V-notch were
obtained by the finite element method [21,22,1]. The singular
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behavior of electro-elastic fields at the corner of wedges and junc-
tions were studied by using Lekhnitskii’s complex potential func-
tions [23]. The expressions of singularity orders (singularity
exponents) and generalized stress intensity factors of out of plane
case were deduced by the Mellin transformation [24]. The failure
behavior of conductive deep notches in piezoelectric ceramics
was studied through the comparison of failure criterion with
experimental verification [25]. The explicit forms of singular elec-
tro-elastic stress field in a piezoelectric material containing a V-
notch under the generalized plane strain and the out of plane shear
loading were proposed using the complex potential function
method associated with eigenfunction expansion method [26,27].

Some of the methods mentioned above, allowing to study the
singular behavior close to V-notches tips, need to solve the tran-
scendental equations by iterative methods, and some of them can-
not be degenerated to analyze the crack problems. In addition, at
most only the first two orders of singularity can be obtained by
the experimental verification. Herein, a novel numerical method
is proposed for the singularity analysis of the piezoelectric material
containing a V-notch. Based on the asymptotic expansion of the
physical field with respect to the radial distance from the vertex,
the governing equations and the mechanical/electrical boundary
conditions are transformed into the combination of the singularity
exponents and characteristic angular functions, which are a set of
characteristic ordinary differential equations with variable
coefficients. The interpolating matrix method [28] developed by
part of the authors before is applied to solving these variable
coefficients equations in order to determine the characteristic val-
ues and characteristic vectors, which correspond precisely to the
singularity exponents and characteristic angular functions. The
present method is versatile for the V-notches in plane and out of
plane loading cases. It can also be efficiently degenerated to calcu-
late the singularity exponents and characteristic angular functions
for the crack problems.

2. Characteristic equations for piezoelectric material containing
V-notches under plane strain state

It is known that the piezoelectric–elastic problems can be decou-
pled into plane and out of plane ones according to the poling axis is

parallel or perpendicular to the piezoelectric material surface. Let us
consider a piezoelectric V-notch under plane strain state shown in
Fig. 1a, where two Cartesian coordinate systems oxy, ox0y0 and a
polar coordinate system orh are defined. The polarization direction
y0 makes angle b with the y-axis, where b is measured from the y-
axis in the counter-clockwise direction.

The constitutive equations for the plane field of a piezoelectric
material in oxy coordinate system when the polarization direction
is along the y-axis is given as follows
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where ðrx;ry; sxyÞ and ðex; ey; cxyÞ are respectively the stress and
strain components, ðDx;DyÞ and ðEx; EyÞ are the components of the
electric displacement and electric field strength, respectively. C11,
C13, C33 and C44 are the elastic modulus, e13 and e15 are the piezo-
electric constants, k11 and k33 are the dielectric constants. By the
coordinate transformation, Eq. (1) can be rewritten in the polar
coordinate system ðorhÞ as
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where the matrix elements Qijðh� bÞ ði; j ¼ 1; � � � ;5Þ are the func-
tions with respect to h and b. The strain and electric field strength
in Eq. (2) can be expressed by the displacement component ur , uh

and the electric potential / like
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Nomenclature

orh polar coordinate system
oxy; ox0y0 Cartesian coordinate systems
b angle of polarization direction
h1; h2 angles of two radial edges of V-notch
rx;ry; sxy plane stress components in Cartesian coordinate sys-

tem
ex; ey; cxy plane strain components in Cartesian coordinate system
Dx;Dy electric displacement components in Cartesian coordi-

nate system
Ex; Ey electric field strength components in Cartesian coordi-

nate system
rr ;rh; srh plane stress components in polar coordinate system
er ; eh; crh plane strain components in polar coordinate system
Dr ;Dh electric displacement components in polar coordinate

system
Er ; Eh electric field strength components in polar coordinate

system
C11;C13;C33;C44 elastic modulus
e13; e15 piezoelectric constants

k11; k33 dielectric constants
ur ;uh plane displacement components in polar coordinate

system
/ electric potential
Ak amplitude coefficient in asymptotic expansions
kk singularity exponent
N number of truncated series item
~uikðkk; hÞði ¼ r; hÞ plane displacement characteristic angular func-

tions
~/kðkk; hÞ electrical potential characteristic angular functions
rxz;ryz shear stresses in Cartesian coordinate system
cxz; cyz shear strains in Cartesian coordinate system
rrz;rhz shear stresses in polar coordinate system
crz; chz shear strains in polar coordinate system
w z-direction displacement component
~wkðkk; hÞ z-direction displacement characteristic angular func-

tions
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