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a b s t r a c t

A meshless variational multiscale methods for thermo-mechanical material failure is presented. Fracture
is modeled by partition of unity enrichment. The displacement field and temperature field is enriched
with step-functions and appropriate crack tip enrichment accounting for fine-scale features. The topology
of the crack is modeled taking advantage of the level set method. The advantage of using a meshless
method instead of finite elements is the ease in treating highly curved cracks with very coarse meshes
due to the higher continuity of the meshless method. Moreover, the higher continuity results also in a
smoother and more accurate stress field avoiding eratic fracture patterns. The method is applied to sev-
eral benchmark problems and compared to analytical results, reference solutions and experimental data
to demonstrate its robustness and efficiency.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thermo-mechanical problems for fracturing solids are of high
relevance in many applications of Engineering Science. While there
are various computational methods for mechanical fracture prob-
lems [5,15,13,30,35,81,37,97,67,63,34,64,21,50,52,83,87,91,92,93,
94,95,96], there are comparatively few contributions dealing with
the simulation of material failure of such coupled problems.
Classically, the finite element method has been used to model this
type of problems. However, finite element method is not well
suited for discrete material failure as it requires aligning the crack
to the element edges that makes the computational results
sensitive with respect to the discretization. Meshless methods
[51] are an interesting alternative to finite element methods
[36,9,7,55,38,2,3,6,4], smoothed finite elements [19,20,89,24,57],
extended finite element methods [48,11,10] or related methods
[85,31,26,48] such as the phantom node method [84,90,73,24]
due to the following advantages:

� Meshless methods are higher order continuous. It has been
shown numerically that this property is advantageous
[76,70,18,72] as the stress field is less eratic in front of the crack
tip and curved cracks can be modeled with coarser discretiza-
tions [43,45,44,41,42,79,80,71,58]. Though XFEM can model
crack growth without remeshing, it still requires a certain mesh
refinement in front of the crack tip.

� H-adaptivity can be incorporates much easier in a meshless
method due to the absence of a mesh [60,65,47].
� Meshless methods are more suitable for dynamic fracture and

fragmentation and problems involving finite strains and large
deformations. They do not require any element deletion that
causes errors in the energy balance and results in loss of mass.

Among many meshless methods, the element-free Galerkin
method (EFGM) [14,12] has been one of the most established and
widely used one. Discrete fracture has been modeled in the EFGM
by concepts such as the visibility method and subsequent improve-
ments such as the transparency method or diffraction method
[54,17]. Partition-of-unity enrichment has been used in the context
of meshless methods before the development of XFEM [30]. A very
elegant approach to fracture was proposed by [27,29] who
enriched the weight functions instead of the entire approximation;
see also the recent work by [8]. It facilitates the implementation as
no additional degrees of freedom (DOFs) need to be introduced.
However, introducing the exact information of the near-crack tip
displacement field into this approach seems to be more difficult.
The extension of XFEM into a meshless concept was done by
[88]. The approach was extended by [1] to LME shape functions
and [66] to non-linear problems and thin shell analysis [69] as well
as fluid–structure interaction [77]. [18,76,97] suggested to omit
crack tip enrichment functions for applications in two- and
three-dimensional non-linear fracture applications as the
implementation of the crack tip (or crack front in 3D) enrichment
complicates the implementation strategy. Moreover, for non-linear
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problems the near-crack-tip solution is not known. However, one
difficulty is to enforce appropriate crack closure which was real-
ized by the Lagrange multiplier method adding additional com-
plexity. Another efficient path to fracture is the Cracking Particle
Method (CPM) [59]. The CPM models the crack topology as a set
of plane crack segments crossing the entire domain of influence
of the cracked node. The CPM has been extended to ductile fracture
[71,65], large deformations [62] and was applied to interesting
problems in statics [61,86,25] and dynamics [74,23,33,75,78].

Here, we present for the first time the extended element-free
Galerkin method (XEFGM) for thermo-mechanical fracture in
linear elastic solids. It can be regarded as an extension of the work
of [28] for adiabatic cracks to meshless methods. The structure of
this paper is as follows: After a brief introduction to EFG, the
governing equations and the weak form will be discussed first. Then,
the discretization of the displacement and temperature field will be
explained. Subsequently, we will derive the discrete system of equa-
tions and present several benchmark examples before the manu-
script concludes with a summary and future research perspectives.

2. Element-Free Galerkin Method (EFGM)

We briefly summarize the EFGM-approximation [14] given by

uiðxÞ ¼
X
I2W

pIðxÞ aIðxÞ ¼ p a ð1Þ

pIðxÞ 1 x y½ � denoting the linear polynomial basis and aIðxÞ denoting
the unknowns; the set of nodes in the discretization is denoted by
W. Minimization of the discrete error norm J with respect to
(w.r.t.) to the unknown coefficients a

J ðaÞ ¼
X
I2W

pTðxIÞ aðxIÞ � uI
� �2

wðx� xI;hÞ ð2Þ

yields the EFG-approximation

uiðxÞ ¼
X
I2W

NIðxÞuiIðtÞ ð3Þ

It can be shown that the shape functions are given by

NIðxÞ ¼ pTðxÞ A�1ðxÞ DIðxÞ ð4Þ

with

DIðxÞ ¼ wðx� xI;hÞpTðxIÞ
AIðxÞ ¼

X
I2W

wðx� xI; hÞ pðxIÞ pTðxIÞ ð5Þ

where wðx� xI; hÞ is the kernel function and h a parameter
governing the support size.

3. Governing equations and weak form

Let us consider domain X with boundary C ¼ Cu
S

Ct
S

Cc ¼
CT
S

Cq and Cu
T

Ct ¼ 0;Cc
T

Ct ¼ 0;Cu
T

Cc ¼ 0; CT denotes the
boundary where temperature is imposed, flux is imposed on
Cq;Ct and Cu are von Neumann boundary and Dirichlet boundary,
respectively, and Cc denotes the crack boundary. In this study, we
consider only adiabatic cracks, i.e. Cc � Cq; �q ¼ 0 on Cc.

The equilibrium equation and the heat equation in strong form
is expressed by

rij;j þ bi ¼ 0 8x 2 X

qi;i þ Q ¼ 0 8x 2 X ð6Þ

rij denoting stress tensor, bi the body forces, Q is heat source and qi

denotes the heat flux. For problems in thermo-elasticity, the com-
patibility conditions and the constitutive equations are written as

qi þ kT ;i ¼ 0i

�ij ¼
1
2

ui;j þ uj;i
� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�mech
ij

�aTDTIij|fflfflffl{zfflfflffl}
�therm

ij

rij ¼ Cijkl�kl ð7Þ

where the upper indices therm and mech designate thermal and
mechanical quantities, respectively; DT is the change in tempera-
ture with DT ¼ T � T0; T0 denoting room temperature and Iij is the
second order identity matrix. The first order elasticity tensor is
denoted by Cijkl and �ij is the (small) strain tensor; aT is the expan-
sion coefficient, k the diffusivity. Note that the thermal field influ-
ences the mechanical field while there is no influence of the
mechanical field on the thermal field. In other words, the thermal
field could be solved decoupled from the mechanical field. How-
ever, in this manuscript we opt to solve the system of equations
in a coupled way. The boundary conditions are given by

ui ¼ �ui on Cu

T ¼ T on CT

ti ¼ rijnj ¼ �ti on Ct

qini ¼ �q on Cq ð8Þ

We assume that the tractions are zero at the free boundary and at
the crack surface. The superimposed bar indicates imposed values
at the associated boundary. The weak form is obtained by multiply-
ing the governing Eq. (6) with arbitrary admissible test functions
dui 2 U0 and dT 2 T 0 and integrating over volume X. Performing
integration by parts and with divergence theorem, we obtain the
weak form of governing equations:Z

X
d�mech

ij rij dX�
Z

X
duibi dX�

Z
Ct

dui�ti dC ¼ 0Z
X

dqikqi dXþ
Z

X
dTQ dX�

Z
Cq

dT�q dC ¼ 0 ð9Þ

The solution spaces of admissible test functions dui and dT and trial
functions ui 2 U and T 2 T are given by

U ¼ uijui 2 H1; ui ¼ �ui on Cu; ui discontinuous on Cc
� �

U0 ¼ duijdui 2 H1; dui ¼ 0i on Cu; dui discontinuous on Cc
� �

T ¼ TjT 2 H1; T ¼ Ti on CT ; T discontinuous on CT
� �

T 0 ¼ dTjdT 2 H1; dT ¼ 0 on CT ; dT discontinuous on CT
� �

ð10Þ

H denoting the first Sobolev space.
As mentioned previously, the non-interpolatory character the

EFG approximation complicates the imposition of Dirichlet bound-
ary conditions. Classical approaches to impose Dirichlet boundary
conditions include coupling to finite element method [16,39,68]
where finite elements are used close to Dirichlet boundaries and
therefore boundary conditions can then be imposed on the FE-
boundary and the Lagrange multiplier method [17]. In this manu-
script, we use the boundary collocation technique as described in
[32] due to its simplicity and robustness. Details can be found in
the given reference. An excellent overview on meshless methods
including imposition of boundary conditions is the paper by [51].

4. Discretization

4.1. Displacement field

The displacement field can be decomposed into a continuous or
standard part ust and discontinuous or enriched part uen:

uh
i ðxÞ ¼ ust

i ðxÞ þ uen
i ðxÞ

duh
i ðxÞ ¼ dust

i ðxÞ þ duen
i ðxÞ ð11Þ
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