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a b s t r a c t

A multiscale method for determining fracture related material parameters in concrete is presented. A
homogenized constitutive law is used in the coarse-scale while the fine-scale accounts for the
meso-scopic features of concrete, i.e. the cement matrix, micro-cracks and aggregates. The fine-scale
and the coarse-scale is coupled by the Lagrange multiplier method. A meshless method is applied where
material failure is modeled by the extended element free Galerkin method. The well-posedness of the
boundary value problem is restored by means of cohesive zone approach. The interface between the
cement matrix and the aggregates are also modeled through the cohesive zone approach. The validity
of the method is shown for two benchmark problems with available experimental results.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Concrete is an important material in bridges, buildings and
other Civil Engineering applications. Its ingredients are cement
matrix, micro-cracks and aggregates. The coarse-scale (i.e. macro-
scopic) material parameters are dependent on the fine-scale (i.e.
mesoscopic) features. One important feature is the behavior of
the interface between the porous cement matrix and the aggre-
gates which has to be taken into account in the computational
formulation. Coarse-scale constitutive model consider concrete as
homogenized material and do not account for fine-scale features.
Therefore, they cannot predict coarse-scale material parameters
based on fine-scale features. Nevertheless, there are numerous
contributions modeling larger concrete structure based on macro-
scopic material models, also accounting for fracture [1–11]. The
focus on this manuscript is to provide a multi-scale approach to
predict coarse-scale parameters rather than determining them
experimentally.

Fracture is an important feature in concrete at all scales. It was
shown for instance by [12] that the large characteristic length of
the fracture process zone in concrete materials does not allow a
linear elastic fracture model. Furthermore, concrete is character-
ized by the nucleation, propagation and coalescence of micro-
cracks that form into a macroscopic crack band. Early approaches
model the fracture behavior of concrete with so-called smeared
crack approaches [3,4,13,14]. However, the poor description of
the crack kinematics, stress locking and mesh-bias prohibit the

use of smeared crack approaches to complex problems. Discrete
crack models, in particular discrete crack approaches based on
enrichment, are strong competitor to smeared crack models
[15–27]. Those methods are commonly used for material failure
in homogenized continua. We will use those methods to model
fracture in the heterogeneous concrete which remains challenging
due to the huge number of cracks and complex fracture patterns
[28,29].

As modeling the entire concrete material as heterogeneous
material is prohibitively expensive, we use a multiscale method.
Only the domain where fracture occurs are considered as heteroge-
neous while other domains are treated as homogeneous material.
The material properties in those domains are obtained by compu-
tational homogenization. The two domains are coupled with the
Lagrange multiplier methods. We assume fracture occurs only in
the cement matrix; the aggregates behave linear elastic. The
extended element free Galerkin (XEFG) method [30,31] is used to
model material failure. This method has advantage over other
mesh-based computational methods for fracture due to its mesh-
free character (ease in adaptive refinement, large deformations
[32–39], etc. [40]) and has been applied to several interested prob-
lems [41–52] and will be used here for the first time in the context
of a multiscale method for fracture in concrete. Other effective
methods such as the extended finite element method [17,53],
smoothed finite element method [54–59], phantom node method
[60–63] or other FE methods for fracture based on edge rotation
[64–68] could be employed as well. Our methodology is validated
by two benchmark problems. We also predict macroscopic mate-
rial parameters and show the influence of the interface model
between the cement paste and aggregates.
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The manuscript is structured as follows: First, the extended ele-
ment free Galerkin method is described. The cohesive zone
approach is explained next before the multiscale method is
described. Two computational results are presented and compared
to experiments before this paper is concluded in the last section.

2. Extended element-free Galerkin method

The approximation of the displacement field in the extended
element free Galerkin method is given by [31]:

uhðXÞ ¼ uh
SðXÞ þ uh

EðXÞ ð1Þ

where uh
SðXÞ is the ‘‘standard’’ EFG approximation while uh

EðXÞ
denotes the enriched or extended part accounting for the jump in
the displacement field. The approximation of the continuous
displacement field in the EFG method can be written as

uh
SðXÞ ¼

Xm

I¼1

pIðXÞ aIðXÞ ¼ pTðXÞ aðXÞ ð2Þ

pTðXÞ denoting the vector of basis functions and m indicating the
number of basis functions in p; aðXÞ is the vector of unknowns. In
a Galerkin method, at least linear basis functions are needed, i.e.
pTðxÞ ¼ 1 X Y½ �. Note that all quantities are expressed in terms of
material co-ordinates X instead of spatial co-ordinates x that is also
common in meshfree methods [35,69,70]. Hence, the shape func-
tions need to be evaluated only at the beginning of the calculation.
The EFG shape functions are obtained by minimizing an error norm
L2 with respect to the unknown coefficients a:

J ¼
Xn

I¼1

pTðXIÞ aðXÞ � uI
� �2

wðX� XIÞ ð3Þ

that will finally yield to the well known EFG approximation (similar
to an FE interpolation):

uðXÞ ¼ NðXÞ D ð4Þ

where the shape functions NðXÞ are given by

NðXÞ ¼ pTðXÞ A�1ðXÞ CðXÞ ð5Þ

with

AðXÞ ¼
Xn

I¼1

wðX� XIÞ pðXIÞ pTðXIÞ

CðXÞ ¼ wðX� X1Þpðx1Þ wðX� X2Þpðx2Þ . . . wðX� XnÞpðxnÞ½ �
D ¼ u1 u2 . . . un½ �

ð6Þ

wðX� XIÞ being the weighting function and uI and XI are the nodal
values of the displacement field at node I and its position, respec-
tively; n is the number of neighbors within the domain of influence
of particle I. We use the following weighting function:

wðdIÞ ¼
e�ðdI=cÞ2�e�ðdmI=cÞ2

1�e�ðdmI=cÞ2
dI 6 dmI

0 dI > dmI

(
ð7Þ

dmI denoting the support size of node I, often called domain of
influence, and c controls the dilation of the weighting function. Note
that in contrast to the FEM, EFG is not interpolatory complicating
the imposition of essential boundary conditions.

The approximation of the enriched displacement field uh
EðXÞ can

be further decomposed into a step enrichment uh
ES and a crack tip-

enrichment uh
ET :

uh
EðXÞ ¼ uh

ES þ uh
ET

¼
XnC

I

NIðXÞ wðf XÞ aI þ
XnT

J

NIðXÞ /ðXðh; rÞÞ bJ ð8Þ

nC being the number of nodes with completely cut domain of influ-
ence and nT denote the number of nodes with partially cut domain
of influence; a and b are additional degrees of freedom. The enrich-
ment functions wðf XÞ and /ðXðh; rÞÞ are given by:

/ðXðh; rÞÞ ¼ r sin
h
2

wðf XÞ ¼
1 f ðXÞ > 0
0 f ðXÞ < 0

�
ð9Þ

We use a level set f X in order to model the crack topology where
r in Eq. (9) denotes the distance of a point to the crack tip; the angle
h is defined in Fig. 1. The crack tip enrichment can be avoided but
special techniques are required [19,71,72] complicating the imple-
mentation, especially when the cracks propagate.

3. Constitutive and cohesive crack model

The cement paste as well as the aggregates are modeled by a
linear elastic constitutive model.

We adopt the cohesive crack model from [73] that is briefly
reviewed in this section. It is based on the potential U:

U ¼ tc0

2D
exp �aDb
� �

i4 þ a i1 � i4½ �ð Þ ð10Þ

with

i1 ¼ I � ½½u�� � ½½u��ð Þ
i4 ¼ ½½u�� � ½½u��ð Þ : n� n

ð11Þ

n denoting the crack normal vector and ½½u�� the discontinuity in the
displacement; a; tc0; b and a are parameters. Differentiating U with
respect to the discontinuous displacement field ½½u�� yields

tc ¼
tc0

D
exp �aDb
� �

un þ autð Þ ð12Þ

un and ut denoting the normal and tangential jump in the displace-
ment field, respectively:

un ¼ ½½u�� � n|fflfflfflffl{zfflfflfflffl}
un

n

ut ¼ ½½u�� � et|fflfflfflffl{zfflfflfflffl}
ut

½½u�� � un

j½½u�� � unj
ð13Þ

where the vector et corresponds to a crack surface (or crack seg-
ment) and D can be derived from the yield surface:

W ¼ j½½u��j � D ð14Þ

It can be shown that the consistent material tangent stiffness of the
cohesive model is obtained by

r

θ

Fig. 1. Modeling of crack by XEFG.
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