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The dynamic fragmentation of brittle materials using the cracking particles method (CPM) with obscura-
tion zone is studied. The CPM is an effective meshfree method for arbitrary evolving cracks. The crack is
modeled by piecewise straight crack segments and does not require any topological representation of the
crack surface. To avoid artificial cracks observed in discrete continuum approaches, obscuration zones are
used as suggested by Mott. The influence of the variation in material properties with different stochastic
input parameters on the results is studied as well.
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1. Introduction

Modeling fragmentation remains one of the key challenges for
analytical and computational methods. Statistical models for frag-
mentation were developed already in the 1940s by [1,2]. He
assumed a statistical distribution of the fracture strain and consid-
ered obscuration zones evolving around propagating and initiating
cracks. One of his key findings was the dependence of the strain-
rate, the homogeneity of the material and the propagation speed
of the obscuration zones on the fragment sizes. The more heteroge-
neous the material, the larger the fragment sizes. [3] considered
later different statistical distributions and found that theories
purely based on statistics cannot appropriately model the compli-
cated physical fragmentation phenomenon.

Refs. [4,5] was one of the first researchers combining mechani-
cal and stochastic models. In the context of a damage model based
on the micro-structure of the material, they assumed statistical
distributions for initiating and propagating micro-cracks. They
implemented their concept into finite element software and
obtained fragment distributions that closely match experimental
observations. Similar studies were conducted by [6,7] but they
did not consider fine-scale features of the micro-structure. They
predicted statistical distribution of fragment sizes in dependence
of macroscopic material parameters such as damage. However,
studies by [8] revealed that fragments contain internal damage
and therefore the damage alone should not be used as criterion
for fragment sizes. Other studies [6,9-13] take advantage of energy
concepts to predict fragment sizes. Most of the fragmentation
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models rely on numerical methods to predict mechanical proper-
ties or quantities. Commonly, finite element analysis was per-
formed not considering the fragmentation process explicitly.
However, advances in computational methods provide now prom-
ising alternatives to model the fragmentation process directly. One
promising alternative to the FEM are meshless methods [14-16].

SPH (Smoothed Particle Hydrodynamics) simulations [17] pre-
dicted quite accurately fragment distributions and fragment sizes.
Due to the meshfree character of the computational method
[15,16,18,19], these simulations were able to model the fragmenta-
tion process explicitly. Other simulations on dynamic fracture and
fragmentation for brittle or quasi-brittle materials were performed
by [20-23]. Artificial fracture has been one concern in modeling
fracture and fragmentation in early meshfree methods but those
issues have been resolved now [24-26]. Meshfree methods for dis-
crete crack approaches have been proposed for example by [27-
29], alternative approaches are for instances based on phase fields
[30,31], remeshing based on edge rotation [32-38], or multiscale
approaches [39-43] or others [44-47]. A very promising approach
for fragmentation is the cracking particles method (CPM) devel-
oped by [48]. The CPM does not require any representation of
the crack surface. The crack is modeled by a set of crack segments
that pass through the nodes. Hence, fragmentation is a natural out-
come of the simulation. The CPM was developed in three-dimen-
sions and extended to fracture in shells [49,50] including FSI
(fluid-structure-interaction) [51-53], ductile fracture [54-56]
and other problems [57-71].

We propose a model for fragmentation combining the CPM and
obscuration zones. We will determine the influence of the strain
date, initial crack distribution on the fragment size. We also check
the validity of the hypothesis of obscuration zones by numerical
simulations. The manuscript is structured into 6 parts: the cracking
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particles method, the damage model and cohesive zone model, the
model for fragmentation based on obscuration zoned, numerical
examples and concluding remarks.

2. Cracking particle method

The CPM [48] is a partition-of-unity meshfree method where
the displacement field is decomposed in a standard part u* and
in an enriched part u®"

u(X, t) = w(X, t) + (X, ) (1)

where t is the time and X are material coordinates. The original CPM
is based on Petrov-Galerkin corrected derivatives method [24] but
it was found advantageous to use MLS-shape functions in the con-
text of the element-free Galerkin (EFG)-method [18] as it was also
proposed by [50,72]. The MLS approximation is used for both, the
standard part and the enriched part of the displacement field. The
MLS approximant is defined by
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where q,(X,t) denotes the unknown coefficients, p,(X) is the basis
vector and W is the set of nodes in the entire discretization. The
MLS approach can also be written in matrix form:

ui (X, 1) = p(X)a(X) (3)

In order to guarantee first-order completeness, linear functions
p(X) = [1XY]" for two-dimensional problems are used. As it was
shown for example by [24], it is important for stability reasons to
formulate the MLS approximation in terms of material coordinates
X instead of spatial coordinates x commonly done in SPH-
approaches [17,20,73,74]. The MLS approximation is obtained by
minimizing a discrete weighted £, norm £ with respect to the
unknown coefficients a
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that finally leads to the famous MLS approximation
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with

N;(X) = p’(X) A" (X) D;(X) (6)

and

D;(X) = w(X — X, ho)p" (X))

A(X) =Y w(X =X, ho) p(X;) p’ (X)) (7)
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where w(x — X, hp) denotes the kernel function and hy is its dilation
parameter with respect to the reference configuration. In the pre-
sented studies, the cubic B-spline commonly used in meshfree
methods is employed
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expressed in terms of the normalized and shifted parameter
s = X X,

The basic idea of the enriched part of the displacement field is
to extend the ‘standard’ approximation in order to capture the
kinematics introduced by cracks. Therefore, the standard shape
functions N;(X) are replaced by enriched shape functions Ni"(X).
The enriched shape functions consists of two parts, a product
between the standard shape functions N;(X) and an enrichment

function y(X) accounting for the kinematics of the crack. Therefore,
the enriched approximation of the displacement field reads:

u? = NP (X = Ni(X) P (X)iy 9)

Wen
with additional degrees of freedom u; and enrichment function
1 X-X¢)-n>0

1 (X-Xc)-n<0 (10)

w0 = {
accounting for the discontinuous displacement field; X¢ is a point
on the crack surface and n denotes the normal to the crack surface.
Only the cracked particles in the set W*" are enriched. The crack
crosses the entire domain of influence of the associated particle.

The first manuscript of the CPM suggested the use of a Petrov-
Galerkin method based on stress-point point integration. Mean-
while, several improvements have appeared concerning the kine-
matic description of the crack surface up to cracking rules in
order to avoid spurious cracking [59-63,75]. We have adopted
the approach in [75]. In this paper, the CPM is used in the context
of the EFG-method and a Bubnov-Galerkin method.

3. Constitutive models
3.1. Continuum model and fracture criterion

The material in the bulk is modeled with a scalar damage
model:
=(1-D)C:e€ (11)

with the fourth-order elasticity tensor C and the damage variable D
that depends on an effective strain €:

D) =1(1-A) e

with material parameters A, B and €, and
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H(¢;) being the Heaviside function and ¢; are the principal strains.

The transition from the continuum to discontinuum is modeled
by loss-of-material-stability criterion [48,72]. Therefore, we com-
pute the eigenvalues of the acoustic tensor Q = N-C-N;N being
the normal to the crack surface when the eigenvalue is smaller
or equal to zero and C is the tangent stiffness matrix of the mate-
rial. The loss-of-material-stability analysis provides directly the
orientation of the crack surface in contrast to other criteria such
as the Rankine criterion where the crack is often introduced paral-
lel to the direction of the maximum principal tensile stress.

As it is well known that local stress tensor does not provide ade-
quate results, a non-local stress tensor is used [76-78]:
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where the term in the denominator accounts for boundary effects.

We use the same averaging (=kernel) function w;(X) as for the
MLS approximation.

anl _

3.2. Cohesive zone model

The cohesive zone model (CZM) of [79] is used taking into
account tangential as well as normal cohesive tractions. Therefore,
let us introduce a so-called effective crack opening displacement

([ulleg = /[l + < []],>2 (15)
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