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a b s t r a c t

An isogeometric analysis method is developed for the stress intensity factors in curved crack problems. In
the isogeometric approach, NURBS (Non-Uniform Rational B-Spline) basis functions in CAD system is
directly utilized in the response analysis, which enables the seamless incorporation of the higher conti-
nuity and the exact geometry such as curvature and normal vector into the computational framework. In
mixed-mode curved crack problems, the precise evaluation of crack-face integral is essential to compute
the precise stress intensity factors, especially for the path-independency of interaction integral. The CAD-
based exact representation of tangential and normal vectors facilitates to exactly define a local coordinate
system at the crack-tip, and accurately evaluate the crack-face integral. Compared with the standard
finite element approach, a higher continuity of stress and strain fields are expected in the interaction
integral domain. Various numerical examples of curved crack problems are presented to demonstrate
the accuracy of developed isogeometric method through the comparison of both exact and finite element
solutions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most challenging issues in structural mechanics is
structural failure due to fatigue and fracture. The identification of
crack initiation and growth is crucial for the evaluation of
structural safety. Many researches based on linear elastic fracture
mechanics have been performed to predict the behavior of the
crack. Recently, Nam et al. [1] apply the control of crack initiation,
propagation, and termination to microscopic pattern generation.
The controlling method could overcome the problem of deterio-
rated resolution of patterns due to electron diffraction in the exist-
ing lithography method by an electron beam, together with a
significant reduction of operation time for pattern generation.
Through numerous experiments, this research shows the feasibil-
ity of micro-notch design to obtain a desired crack path. However,
for the precise control of the crack formation, it is necessary to
predict the initiation and stability of the crack growth using precise
stress intensity factors (SIF). The derivative of SIF is helpful to
predict the direction of crack growth together with the instability
of a fracture or life cycle. As the first order derivative of potential
energy, Feijoo et al. [2] discussed a finite element based shape

sensitivity analysis for the energy release rate (G) in cracked
structures.

In analyzing crack propagation, even though standard finite ele-
ment analysis (FEA) is suited for the approximation of smooth
solutions and thus widely used in engineering practice, it often
encounters non-smooth problems which might result in computa-
tional difficulties. In particular, in the analysis of crack propagation
problems, the FEA requires a tedious re-meshing process and the
alignment of crack lines with the edge of finite elements. To over-
come these difficulties, Belytschko and Black [3] proposed an
extended finite element method (XFEM), which provides flexibility
and versatility in the modeling of discontinuity that does not
require the alignment of crack lines as well as the re-meshing of
finite elements. The solution space is locally enriched in the space
of FEA approximation and its discontinuity is implicitly embedded
inside the element. Moës et al. [4] incorporated the discontinuous
displacement field using a Heaviside function at the crack surface
away from the crack tip and implicitly expressed the path of crack
growth combined with the level set method. Stazi et al. [5] devel-
oped a method for incorporating the step function and the near-
field crack-tip enrichment by discontinuous partitions of unity in
higher order elements.

The interaction integral (M-integral) formulation derived from
the J-integral which considers a superposition of actual and auxil-
iary field [6] is known to be the most accurate and efficient method
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for calculating SIFs under mixed-mode loading conditions. Gosz
and Moran [7] adopted the interaction integral method to study
3D non-planar cracks in homogeneous materials. Using the inter-
action integral formulation, Walters et al. [8] computed the SIF in
mixed mode for 3D curved crack problems subjected to surface
tractions. They point out that for the evaluation of the response
in the auxiliary field, the local coordinates of a crack-tip should
be highly accurate but could be inaccurate due to geometric
approximation errors if linear finite elements are used. To over-
come the aforementioned difficulty, they employ a local orthogo-
nal coordinate system but require a highly refined mesh for
precise computation. Yu et al. [9] extended the interaction integral
method to solve the fracture problems in 3D nonhomogeneous
materials with arbitrary interfaces in the integral domain. Never-
theless, the geometric approximation in numerical methods has
always been an important and persisting issue to overcome.

Recently, taking advantage of the NURBS (Non-Uniform
Rational B-Spline) basis functions, Hughes et al. [10] developed
an isogeometric analysis (IGA) method that has many advantages
over the standard FEA in various engineering applications such as
structural vibrations, fluid–structure interactions, and turbulent
flow simulations. The geometric approximation which is inherent
in the finite element mesh could lead to accuracy problems in
response. The piecewise linear approximations of geometry turned
out to be the root cause. The major feature of the isogeometric
method is to employ the same NURBS basis functions as used in
the CAD systems, which is a significant advantage of exact repre-
sentation of geometry. The isogeometric analysis method has
many features in common with the FEA; it invokes the isoparamet-
ric concept where the dependent variables and the geometry share
the same basis functions. Also, the method has some features in
common with the meshfree methods; it is not interpolatory. The
isogeometric method is rapidly extending its applications in areas
such as shell analysis [11], shape sensitivity analysis and optimiza-
tion [12], and adaptive shape optimization enhanced by T-splines
[13]. The isogeometric method has a major feature such as the
CAD based parameterization of field variables in an isoparametric
manner and thus requires no further communication with the
CAD systems during refinement processes.

Verhoosel et al. [14] employ the isogeometric method having
higher order continuity for the approximation of higher order gra-
dient damage, which overcomes the limitation of conventional FEA
having C0 continuity. Verhoosel et al. [15] use the NURBS basis
function for the discretization of cohesive zone formulation, and
represents the discontinuity through the insertion of knots. Also,
the evolution of T-spline mesh is utilized to represent the growth
of crack. To improve the solution accuracy in the isogeometric
method, De Luycker et al. [16] employ the enrichment at control
points to represent the discontinuity and singularity at the crack-
tip. Only the problem of mode-I straight crack is considered so that
there is a still limitation on the solution accuracy in curved crack
problems due to geometry approximation even though a sub-
triangle technique is used for the partial numerical integration of
elements. Ghorashi et al. [17] also uses the enrichment and sub-
triangle technique for partial numerical integration in the isogeo-
metric analysis, and tried to solve a mixed mode straight crack.
For general curved crack problems, the geometry is still

approximated by straight lines and thus the accuracy of stress
intensity factor is not thoroughly verified. In this paper, the curved
geometry of the cracks is exactly represented by taking advantage
of the isogeometric approach.

This paper is organized as follows: in Section 2, we briefly sum-
marize the NURBS basis function and explain how to represent the
discontinuity for cracks by a CAD model. In Section 3, using an
interaction integral formulation, the IGA method for SIFs is pre-
sented, taking advantage of exact geometry to define a local coor-
dinate system at a crack-tip in the isogeometric approach. In
Section 4, several numerical examples are presented to demon-
strate the advantage of the developed IGA method for the curved
crack problems. The IGA results are verified with both finite ele-
ment and exact solutions. Finally, the importance of the developed
IGA method and its superior points especially for the curved crack
problems are discussed in the concluding remarks.

2. NURBS basis function

2.1. B-spline basis function

In the IGA, the solution space is represented in terms of the
same basis functions used for representing the geometry. The
IGA method has several advantages over the conventional FEA such
as exact geometry and simple refinements which are the results of
the use of NURBS basis functions based on B-splines. Consider a
knot vector n in one dimensional space, which consists of knots
ni in a parametric space.

n ¼ n1; n2; . . . ; nnþpþ1
� �

; ð1Þ

where p and n are the order of the basis function and the number of
control points, respectively. B-spline basis functions are recursively
defined as

N0
i ðnÞ ¼

1 if ni 6 n < niþ1

0 otherwise

�
; ðp ¼ 0Þ ð2Þ

and

Np
i ðnÞ ¼

n� ni

niþp � ni
Np�1

i ðnÞ þ niþpþ1 � n

niþp�1 � niþ1
Np�1

iþ1 ðnÞ; ðp ¼ 1;2;3; . . .Þ:

ð3Þ

Using the B-spline basis function Np
i ðnÞ and the corresponding

weight wi, a NURBS basis function Rp
i ðnÞ is defined as

Rp
i ðnÞ ¼

Np
i ðnÞwiPn

j¼1Np
j ðnÞwj

: ð4Þ

Generally, an isogeometric approach using higher order basis
functions offers higher regularity than the conventional FEA. The
NURBS possesses the following desirable properties as a basis
function:

(1)
Pl

i¼1Rp
i ðnÞ ¼ 1 (partition of unity).

(2) Rp
i is included in the interval ½ni; niþpþ1� (compact support).

(3) Rp
i ðnÞP 0 (non-negativity).

Nomenclature

XI, (I = 1, 2) or X, Y global rectangular Cartesian coordinates
xi, (i = 1, 2) or x, y local rectangular Cartesian coordinates at

crack-tip

Xc position of crack-tip in global Cartesian coordinates
ni, (i = 1, 2) normal vector in local Cartesian coordinate at crack-tip
Cþc ;C

�
c upper and lower crack-faces
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