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a b s t r a c t

Stress intensity factors for internal surface cracks in autofrettaged functionally graded cylinders have
been studied. It is assumed that the mechanical properties change with a power law in radial direction
of cylinder. Effects of autofrettage pressure, volume fraction, crack dimensions and cylinder thickness
on the stress intensity factors in deepest and surface points of cracks were determined by using the
weight function method. Results show that the changes in volume fractions of ingredients have more
effects than the other parameters.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Autofrettage is a process for inducing compressive residual
stress in internal parts of the thick walled cylinders by using the
high internal pressure. The pressure is large enough to cause
material yielding within the wall. After removing the applied
pressure, partially yielding creates the compressive residual stress
at the inner part while the outer part has a tensile residual stress.
The compressive residual stress can reduces the rate of fatigue
crack growth in the materials.

Functionally graded materials (FGMs) are special composites
where the volume fraction of constituent materials vary gradually
and produce non-uniform microstructure with continuously
graded macro-properties. There is no discontinuity in the thermal,
mechanical and other properties. Change in type and volume
fraction of ingredients can optimize the FGM to achieve high per-
formance and material efficiency. There are no distinct internal
boundaries inside the material and thus minimal interfacial stress
concentrations are developed. These materials are used extensively
in applications where the operating conditions are usually severe.
For instance, due to simultaneous thermal and mechanical
loadings, stress concentrations are developed, which can lead to
cracking in ceramic–metal composites. In order to avoid this, the
FGMs with gradual variation in the properties are being used.
These graded materials can be used also in wear resistant linings
for handling heavy abrasive ore particles, rocket heat shields,
heat exchanger tubes, thermoelectric generators, heat-engine

components and many applications which require minimization
of thermo-mechanical mismatch in metallic-ceramic bonding.

Determination of parameters of cracks in the autofrettaged
functionally graded thick cylinders (FGCs) can be useful in study
of the behavior of these materials in critical conditions. Stress
intensity factors (SIFs) can be used to predict the fracture behavior
and optimize the design of the FGM composites. Because of graded
behavior of FGMs, the SIFs were determined usually in critical
points such as deepest and surface points of the crack front.

The fatigue and fracture behavior of a pressure vessel is signifi-
cantly affected by residual stress. Using the autofrettage process for
generation of residual stress in FGMs has been investigated in the
literature. Jahromi et al. [1] studied the residual compressive stres-
ses induced in an autofrettaged pressure vessel made of the FGM by
developing the variable material property (VMP) method for mate-
rials with varying elastic and plastic properties versus position.
They showed that the reinforcement of an autofrettaged metallic
cylinder by ceramic, with an increasing ceramic volume fraction
from inner to outer radius, increases the compressive residual stres-
ses at the inner section. Distribution of the residual stresses induced
by autofrettage process in layered and functionally graded compos-
ite vessels has been achieved [2]. Calculations were carried out
using an extension VMP method and validated in several cases
using finite element calculations. This study showed that the
induced residual stress at the inner surface of composite vessels
could reach much higher values compared to a metal vessel coun-
terpart, depending on the properties of the composite constituents.

Applying severe stress gradients on the FGMs which induced by
thermal or mechanical loadings can lead to the formation of some
surface defects such as cracks. These imperfections, in turn, can
seriously endanger the structural integrity [3]. Therefore, it is
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necessary to study the fracture behaviors of the FGMs in various
conditions and under composition of different loadings like
residual and/or thermal stresses. There are several studies where
performed on the cracked FGMs. Some researches were done on
calculating the SIFs using the concept of J-integral and interaction
integral (which involves both actual and auxiliary fields in
J-integral calculation) for various loadings on the FGMs [3–10]. Also
energy methods such as strain energy density (SED) were employed
to determine the failure and crack growth direction in FGMs [11,12]
Other investigations were performed using the displacement
fields around crack tip or crack front (calculation of crack open-
ing displacement (COD)) [13–20]. Some researchers calculated
the SIFs in two dimensional conditions by using the limiting
proper expression of near field stresses (multiply of stress in
radical of difference between crack tip location and parallel coordi-
nate to crack line) [21] which be used for homogeneous materials.

Fett et al. [22] studied the applicability of weight function (WF)
method to predict the SIFs in the FGMs. They concluded that, if
Young’s modulus at the crack tip is used in relations, the Rice equa-
tion among the displacements and the weight function is valid
also for graded materials.

There are some studies on the evaluation of the SIFs due to the
residual stress by WF method. Shen et al. [23] used this method for
calculating the residual SIFs for axial cracks in an autofrettaged
metal cylinder. Also, Bao et al. [24] evaluated the SIFs due to weld-
ing residual stresses using FEM and WF methods. They recom-
mended that measured residual stresses should be firstly
processed, e.g. smoothed, fitted and balanced, before conducting
analysis to obtain more accurate results for the residual SIFs.

In this paper, we used a proper subroutine (UMAT) in the FEM
(abaqus) software to calculate the residual stress distribution due
to autofrettage on a functionally graded cylinder. By using the
weight function method, the stress intensity factors in deepest
and surface points of internal semi-elliptical cracks were obtained.
The cracks are axially oriented. Effects of several variables such as
crack geometries, volume fractions of FGM components, autofret-
tage and applied pressures and thickness of the cylinder on the
residual SIFs were studied.

2. Micromechanics of FGM

The material properties of the FGM, such as Young’s modulus,
often are evaluated from properties of the constituent materials
using micromechanics models. Based on the rule of mixtures, a
simple model, which is identified as ‘‘Tamura–Tomota–Ozawa’’
(TTO) model [25], is proposed to describe the elastic–plastic
stress–strain curves of graded materials [26]. This model relates
the uniaxial stress, r, and strain, e, of the FGM to the corresponding
uniaxial stresses and strains of the two constituent materials by:

r ¼ Vmrm þ Vcrc; e ¼ Vmem þ Vcec; Vm þ Vc ¼ 1:0 ð1Þ

where V ¼ VðrÞ denotes the volume fraction of the constituent
material which varied with radial position, r, and subscripts m and
c are used for ductile (metal) part and brittle (ceramic) part,
respectively. In the TTO model, an additional parameter, q, is defined
to represent the ratio of stress-to-strain transfer, as follows [27]:

q ¼ rc � rm

ec � em
; 0 < q <1 ð2Þ

In which q ¼ 0 and q!1 correspond to property averaging
with equal stress and equal strain, respectively. Based on the linear
Hooke’s law, Young’s modulus, E, of the FGM may be obtained from
equations 1 and 2, as:

E ¼ VmEm þmVcEc

Vm þmVc
; m ¼ qþ Em

qþ Ec
ð3Þ

Whereas, brittle material does not yield, the initial yield stress
(SY ) of the FGM is as follows [26,27]:

SY ¼ SYmðVm þmVcEc=EmÞ ð4Þ

By assuming the bilinear relation between the stress and strain
for FGM as depicted in Fig 1, its tangent modulus, H, can be written
as:

H ¼ VcEc þ hVmHm

Vc þ hVm
; h ¼ qþ Ec

qþ Hm
ð5Þ

where Hm is the tangent modulus of metal.
Schematic of mentioned variables is shown in Fig 1.
Because of variation of the volume fraction versus radial

position in the cylinder, the mechanical properties also change in
the wall.

2.1. Governing equations

It is assumed that the FGM is locally isotropic and yields accord-
ing to the von Mises criterion. For a cylindrical pressure vessel, the
material properties of a point located at a distance x ¼ r � Ri from
internal radius (Ri) can be represented by an elastic modulus, EðxÞ,
and constant Poisson’s ratio, v and a curve that represents the
plastic behavior. This curve can be written in the following form:

@rY=@ep ¼ Hðx; epÞ ð6Þ

where rY and ep are the yield stress and equivalent plastic strain,
respectively. If Hðx; epÞ do not depend on the ep (i.e. rY versus ep

is a line as depicted in Fig 1) then we can write:

rY ¼ SYðxÞ þ HðxÞðepÞ ¼ SYðxÞ þ HðxÞðe� SYðxÞ=EðxÞÞ ð7Þ

where e is the equivalent total strain.
The components of strain tensor, eij, is the summation of the

elastic part, ee
ij, and plastic part, ep

ij (i.e. eij ¼ ee
ij þ ep

ij or in the incre-
mental form deij ¼ dee

ij þ dep
ij). The elastic part is given as,

ee
ij ¼

1þ v
EðxÞ rij �

v
EðxÞrkkdij ð8Þ

where dij is the Kronecker symbol. By using the definition of devia-
toric stress tensor sij ¼ rij � dijrkk=3 and deviatoric elastic strain
tensor eij ¼ ee

ij � dijee
kk=3, Eq (8) can be converted to the following

equation:

sij ¼ 2Geij ð9Þ

where GðxÞ ¼ EðxÞ=2ð1þ vÞ is the shear moduli of FGM.

Fig. 1. Schematic of uniaxial stress–strain curve of the FGM (TTO model [25]).
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