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a b s t r a c t

In this paper, a methodology for solving the ED (economic dispatch) problem considering the uncertainty
of wind power generation and generators reliability is presented. The corresponding PDF (probability
distribution function) of available wind power generation is discretized and introduced in the optimi-
zation problem in order to probabilistically describe the power generation of each thermal unit, wind
power curtailment, ENS (energy not supplied), excess of power generation, and total generation cost. The
reliability of each unit is incorporated by estimating the joint PDF of power generation and failure events,
while the PDF of ENS is incorporated by convoluting the PDF of ENS due to the forecasting error and any
failure event. The performance of the proposed approach is analyzed by studying two power systems of 5
and 10 units. The proposed method is compared to MCS (Monte Carlo Simulation) approach, being able
to reproduce the PDF in a reasonable manner, specifically when system reliability is not taken into
account.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Energy obtained from renewable energy sources has a key role
to the sustainable development in the near future. Wind and solar
energies have been continuously growing motivated by govern-
mental incentives, the reduction in the operating and capital costs,
and the increment in the revenue streams. Because of these con-
ditions, the energetic policy is based on the increment of renewable
power penetration. As a result, it is expected that in the year 2040,
renewable generation is going to represent about 16% of total
generation capacity in the United States.

Natural gas is going to be another important resource for power
generation due to the expected reduction inmarket prices. In fact, it
is likely that natural gas will become the main source of power
generation in the United States in 2040, substituting the power
capacity provided by coal-fired and nuclear power plants, sharing
about 43% of the total generation capacity. This generation mix
mainly composed by natural gas and renewable energies as the
main power sources is going to lead to an important reduction in

CO2 emissions, reaching a decrease of about 11% from the emission
levels of the year 2012 [1].

However, the variability related to the renewable energy sources
and the difficulties related to storing energy represent important
limitations in massive deployments of renewable sources to fully
supply peak-load and base-load. To deal with the problems related
to the stochastic nature of renewable energy sources, many ap-
proaches have been proposed, such as the analysis of geographic
properties of aggregated wind power generation [2], the optimal
management of ESSs (energy storage systems), implementation of
DRPs (demand response programs) [3,4], and improvements in
scheduling techniques in order to incorporate the wind power
uncertainty by means of their corresponding forecasting error.

Analyzing the geographic characteristics of the place to locate a
determined wind farm in order to connect it with other ones and
smooth the aggregated power production could require an addi-
tional investment that affects the profitability of the project [5].
Moreover, economic viability of a determined technology of ESS
depends on the renewable penetration level and its variability, the
regulatory environment, and the revenues in yearly bases [6]. The
main barrier for the implementation of DRPs is related to the un-
certainty in people's behavior when the electricity prices are
dynamically changed. This uncertainty is reflected in the estimation
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of price elasticity, which is frequently used to decide the optimal
use of demand response resources [7].

As a result, several approaches have been presented in the
technical literature, such as stochastic programming, chance con-
strained programming, stochastic dynamic programming, robust
optimization, and probabilistic approaches.

Stochastic programming approaches consist on carrying out the
optimal management taking into account some possible situations
or scenarios randomly generated. In our case, these scenarios
represent the stochastic behavior of load demand, wind power
generation and failure events.

In this regard, Tuohy et al. [8] introduced a methodology that
employs scenarios randomly generated of load demand and wind
power generation using an ARMA (autoregressive moving average)
model combinedwith a reduction algorithm in order to select those
representative scenarios. Then, power system management is

carried out by solving a mixed integer programming optimization
problem obtaining a feasible solution for the scenarios previously
selected. However, in this approach a limited number of scenarios is
analyzed, which represents an important source of error.

To overcome the aforementioned problem, Ruiz et al. [9] pro-
posed the incorporation of spinning reserve requirements for each
scenario, as well as the incorporation of extreme scenarios of failure
events, such as single outage of the largest generation unit in order
to provide a robust solution.

In other research work, Constantinescu et al. [10] paid special
attention to the quality of scenarios used in stochastic program-
ming optimization models. The authors have developed a model
that joins a weather research and forecast model with a UC (unit
commitment)/ED (economic dispatch) model in order to analyze
the effects of wind power uncertainty on the scheduling problem.
Among the most important findings, authors concluded that their

Nomenclature

AWPk discrete PDF of available wind power generation
Am, Bm, Cm parameters of cost curve of unit m
DLki value of the power consumed by the dump load at time

k that corresponds to the sampling point i
DLk dump load at time k
DRm ramp down limit of unit m
Dk load demand at time k
E(l,m) discrete PDF of power production when generators

reliability is considered
ENSki value of energy not supplied at time k that corresponds

to the sampling point i
Fmh discrete PDF of lack of power of unit m as a

consequence of a failure event
FORm forced outage rate of unit m
Feb CDF of power loss as a consequence of a failure in the

generator system
GHGm CO2 emissions of unit m
NPr{$} normalized probability of occurrence of a determined

event
Ph power value that corresponds to the discrete state h
Pb power value that corresponds to the discrete state b
Pk�1
m;i power production of unit m at time k�1 that

corresponds to the sampling point i
Pmax maximum power value to be considered
Pmin minimum power value to be considered (assumed to

be zero)
Pkm discrete PDF of power production of unit m at time k
Pmax
m maximum output power of unit m

Pmin
m minimum output power of unit m

Pr{$} probability of occurrence of a determined event
URm ramp up limit of unit m
Um, Vm parameters of the CO2 emission curve of unit m
Wk discrete PDF of wind power generation
Wk

max maximum value of available wind power generation at
time k

Wk
min minimum value of available wind power generation at

time k
Xm parameter of the CO2 emission curve of unit m
a0 to a3 auxiliary variables
awpkj value of available wind power generation of discrete

state j at time k

bm discrete state that corresponds to the rated capacity of
unit m

sr value that corresponds to the discrete state r
wk

j value of wind power generation of discrete state j at
time k

zi,j total generation cost that corresponds to the sampling
point i and the discrete state of available wind power
generation j

qi sampling point I of the interval [g, 1�g]
h discrete state of power production ðh2½0;H�Þ
B total number of bins of discrete PDF of power

production
H last state of h (H ¼ B�1)
I total number of sampling points of interval [g, 1�g]
J total number of bins of the discrete PDF of wind power

generation
L last state of l (L ¼ (H þ 1)2 ¼ B2)
M total number of thermal units
R last discrete state of beta PDF
VOLL value of lost load
VOWE value of wasted energy
b discrete state of power production b2½1;B�
i index of sampling point qi, i2 ½1; I�
j discrete state of available wind power generation
l discrete state of power production when generators

reliability is considered
m index for each generation unit
r discrete state of beta PDF in the interval [0,1], r2½0;R�
DP discretization step of the power values Pb
Dq sampling increment of interval [g, 1 � g]
a, b parameters of continuous beta PDF
g significance level
s parameter of the discretization process

Table of abbreviations
ESS energy storage system
DRP demand response program
ARMA auto-regressive moving average
UC unit commitment
ED economic dispatch
PDF probability distribution function
PSO particle swarm optimization
ENS energy not supplied
MCS Monte Carlo simulation

G.J. Os�orio et al. / Energy 82 (2015) 949e959950



Download English Version:

https://daneshyari.com/en/article/8075538

Download Persian Version:

https://daneshyari.com/article/8075538

Daneshyari.com

https://daneshyari.com/en/article/8075538
https://daneshyari.com/article/8075538
https://daneshyari.com

