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a b s t r a c t

The variation principle is applied for defining a crack in the solid body. The methods proposed in [G. Sih,
C. Chen, Non-self-similar crack growth in elastic–plastic finite thickness plate, Theoretical and Applied
Fracture Mechanics 3 (1985) 125–139] extend to presence of electromagnetic fields in material. Crack
propagation in non-homogeneous media has been considered. It is shown that electromagnetic fields
in the material are essentially affecting the trajectory. The crack trajectory stability has been studied
as function of fracture energy, phase portraits of the trajectory in different media have been built, and
various attractor types have been revealed. Different crack morphologies from single straight and oscil-
lating crack propagation to straight double crack propagation were theoretically founded. In compliance
with the experimental data of [R. Niefanger, V.-B. Pham, G. Schneider, H.-A. Bahr, H. Balke, U. Bahr, Quasi-
static straight and oscillatory crack propagation in ferroelectric ceramics due to moving electric field:
experiments and theory, Acta Materialia 52 (1) (2004) 117–127], it has been demonstrated that periodic
electromagnetic field results in trajectory stochastization. This can be used for switching the crack over
from the mode of mainline propagation into the mode of development of the field of diffused
microcracks.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The issue of a fracture front shape is crucial for studying the
behavior of materials and structures in critical operation condi-
tions, close to the area of potential destructions. As a rule, the frac-
ture is treated as a mathematical cut that propagates rectilinearly
in some homogeneous (ideal) material. However, a deeper analysis
shows that a correct application of linear destruction mechanics
results in demonstration of the fact that the fracture front is curvi-
linear. It was shown in [1], which for some reasons failed to attract
due and thorough attention of researchers working in the field. The
issue of fracture trajectory in a non-uniform ambient (for example,
in a material with varying mechanical constants) or in a medium
full of non-uniform electromagnetic field, has been insufficiently
studied.

Piezoelectric and ferroelectric ceramics are attracting additional
attention, since they are more and more broadly used recently.
Simultaneously the some properties of the fracture not investi-
gated satisfactory till now. An influence of the electric field upon
the fracture toughness has been observed by many researchers
experimentally [2] and theoretically. One of the first fundamental
works in the field of piezomaterial fracture [3] has formulated

the basic problems, various aspects of which, especially mathe-
matic ones, are intensely studied [4–9]. Possibility to apply differ-
ent fracture criterion to piezomaterial discussed in [10].

The work below is a further development of the method that
can be used for predicting a fracture trajectory in non-uniform
media [11], in case the material has electromagnetic field inside.

2. Crack energy density criterion and trajectory of crack

2.1. Crack trajectory: problem statement

It is widely known that the problem of determining the extreme
of any functional correspond to solving the Euler–Lagrange equa-
tion. For example, the main idea of the Sih criterion of fracture
[12] for determining the direction of crack propagation is to find
the minimum of the strain energy density function. Mathemati-
cally, this problem can be reduced to the variational problem for
the potential function because the strain energy density function
is the part of total potential energy of the body. Geometrically
speaking, the solution of the Euler–Lagrange equation is the equa-
tion of the geodesic line [13]. A crack’s trajectory obtained in this
way is a geodesic line in a specially constructed state space. Appar-
ently, such a view was also considered by [14]. Let the medium be
elastic and is governed by the relation

eijðx; yÞ ¼ Cijklrklðx; yÞ ð1Þ
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where eijðx; yÞ is the strain tensor, Cijkl is the compliance coefficients
tensor and rklðx; yÞ is the stress tensor. Consider the medium that is
stretched along the y-axis from infinity. The equation for specific
energy (i.e. energy per unit length) has the form [12,15]

d
Z eA

eB

ð2c� P1u1Þds ¼ 0; ð2c� P1u1Þ ¼ Fðx; y; _yÞ ð2Þ

where c is the density of surface energy of the material, Pi ¼ rijnj

are the stress tensor components on the pads, the position of which
coincides with the crack surface, ni is the guiding cosine of the
external normal to the crack surface, ui is the displacement of the
crack edges, eA; eB are the – initial and final crack lengths, accord-
ingly. The equation of crack trajectory is written down in the form
as: y ¼ yðxÞ.

Leaving out the fractal properties of the trajectory and suppose
that trajectory is sufficiently smooth, it is possible to reduce Euler
equation to form [11,13]

y00 � y0f1ðx; yÞ þ f2ðx; yÞ ¼ 0 ð3Þ

where the notations

f1ðx; yÞ ¼
o ln Qðx; yÞ

ox
; f 2ðx; yÞ ¼

o ln Qðx; yÞ
oy

;

Qðx; yÞ ¼ F�1ðx; yÞ ð4Þ

are have been adopted.

2.2. The trajectory in layered media

Consider a crack trajectory in periodically non-homogeneous
medium, defined by the correlation of the type:

ðln Qðx; yÞÞ;x ¼ dþ c cos xx ð5Þ

By integrating (5), we can obtain a clear expression for function
QðxÞ ¼ FðxÞ�1:

QðxÞ ¼ C1 exp � dxxþ c sinðxxÞ
x

� �
ð6Þ

where C1 is the integration constant. The behavior of the non-
homogeneity is in general exponential (the slope degree of the
exponent is regulated by index d). A deviation of the function from
smoothness (scatter of the properties of the composite by layers) is
regulated by parameter c.

By substituting (5) into (3), the Duffing equation is obtained,
containing _y, as equation of the mid-plane line shape of crack:

€y� yþ y3 þ d _y ¼ c _y cos xx

�f 0
2;y ¼ þ1;� 1

2 f 0
2;y2 ¼ 0;� 1

3 f 0
2;y3 ¼ �1

ð7Þ

It has been shown in [16] that in this case the system is not the
Hamiltonian one, and it is necessary to find the conditions for the
onset of deterministic chaos. In a similar way [17], the conditions
for transition from the deterministic motion of the beam trajectory
to the chaotic one are found.

According to the representation of Eq. (7), the crack trajectory
depends on the composite constituents described by the parame-
ters c;x and d.

The results of building phase portraits and the trajectory of
crack propagation for different initial conditions are presented in
Figs. 1–8. The equation was integrated by the standard Runge–
Kutta method with degree four interpolation. The integration step
was defined by the capacities of the used computers and in any
case did not exceed 0.05. It follows from the curves on the Fig. 2,
the system has a very fast stabilization. The phase portrait contains
the stable focus. It means that fluctuation in the media parameters
is small relative of medium properties and instability not growth.

Figs. 2 and 4 illustrate the dependence of the behavior of the
trajectory on parameter d. It is seen that the trajectories are similar
in the principle.

The case Figs. 3 and 4 the weak attractor exists but it is broken
under the weak excitation. In case Fig. 6 the crack trajectory is
unstable, but standard Maple computing algorithm limited possi-
ble diapason of investigation.

Fig. 1. Phase portrait of crack trajectory. Values c ¼ 0:1; x ¼ 0:1; d ¼ 1; initial
conditions yð0Þ ¼ 0:0001; _yð0Þ ¼ 0:005.

Fig. 2. Crack trajectory. Initial conditions yð0Þ ¼ 0; _yð0Þ ¼ 0:0005 – solid line,
yð0Þ ¼ 0; _yð0Þ ¼ �0:0005 dotted line.

Fig. 3. Phase portrait. Values c ¼ 0:01; x ¼ 0:1; d ¼ 0:1.

190 I.A. Miklashevich / Theoretical and Applied Fracture Mechanics 51 (2009) 189–194



Download English Version:

https://daneshyari.com/en/article/807584

Download Persian Version:

https://daneshyari.com/article/807584

Daneshyari.com

https://daneshyari.com/en/article/807584
https://daneshyari.com/article/807584
https://daneshyari.com

