#### ARTICLE IN PRESS

Energy xxx (2014) 1-14



Contents lists available at ScienceDirect

## Energy

journal homepage: www.elsevier.com/locate/energy



# Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm

Mojtaba Ghasemi <sup>a, \*</sup>, Sahand Ghavidel <sup>a</sup>, Mohammad Mehdi Ghanbarian <sup>b</sup>, Masihallah Gharibzadeh <sup>a</sup>, Ali Azizi Vahed <sup>a</sup>

#### ARTICLE INFO

Article history:
Received 19 October 2013
Received in revised form
3 October 2014
Accepted 4 October 2014
Available online xxx

Keywords:
Multi-objective OPF (optimal power flow)
problem
MOMICA (Multi-Objective Modified
Imperialist Competitive Algorithm) method
Fuel cost
Emission
Voltage profile
Power losses

#### ABSTRACT

This study presents a new MOMICA (Multi-Objective Modified Imperialist Competitive Algorithm) for the multi-objective OPF (optimal power flow) problem. The OPF problem can be solved for minimum generation cost which satisfies the power balance equations and system constraints. However, cost based OPF problem solutions usually result in unattractive system emission, losses and voltage profiles. In this paper, the fuel cost, emission, voltage deviation and active power losses impacts are considered as the objective functions for the proposed multi-objective OPF problem. The obtained final optimal solution using MOMICA is compared with that obtained using multi-objective algorithm in the literature. The performance of multi-objective algorithms is studied and evaluated on the standard IEEE 30-bus and IEEE 57-bus power systems. The proposed MOMICA method provides better results compared with the other algorithm as demonstrated by simulation results.

© 2014 Elsevier Ltd. All rights reserved.

#### 1. Introduction

The OPF (optimal power flow) problem is very important in energy management systems. This problem is a static non-linear, non-convex, large-scale and static programming problem which optimizes a certain objective function while satisfying a set of physical and operational constraints imposed by equipments and power system limitations. Nodal power balance equations and restrictions of all control or state variables are examples of equality constraints and inequality constraints. The control variables include the generator real powers, the generator bus voltages, the tap ratios of transformer and the reactive power generations of VAR (volt amperes reactive) sources while state variables involve the generator reactive power outputs, load bus voltages and flow of the network lines. Accordingly, the OPF problem is considered as a basic tool allowing electric utilities to characterize secure and cost effective operating conditions for an electric power system [1].

http://dx.doi.org/10.1016/j.energy.2014.10.007 0360-5442/© 2014 Elsevier Ltd. All rights reserved.

In recent decades, various population-based optimization techniques have been applied to solve complex constrained optimization problem which also include optimization problem in field of power systems such as OPF problem. Generally, achieving optimal or near optimal solution for a specific problem requires multiple trials as well as accurate adjustment of associated parameters. Some of the proposed population-based methods such as MDE (Modified Differential Evolution) algorithm [2] presents algorithm for solving OPF problem with non-convex and non-smooth generator fuel cost, DE (Differential Evolution) [3] with different objective functions that reflect total fuel cost minimization, voltage stability enhancement, and voltage profile improvement, an ISS (Improved Scatter Search) method to deal with multi-objective EED (Environmental/Economic Dispatch) problems [4], which is formulated as a large-scale highly constrained nonlinear multi-objective optimization problem, based on concepts of Pareto dominance and crowding distance and a new scheme for the combination method [5], a new DQLF (Decoupled Quadratic Load Flow) solution with EGA (Enhanced Genetic Algorithm) [6] to solve the OPF problem for simultaneous minimization of fuel cost, loss and voltage stability index, a proposed DPOPF (Distributed and Parallel OPF) algorithm for smart grid with

<sup>&</sup>lt;sup>a</sup> Department of Electronics and Electrical Engineering, Shiraz University of Technology, Shiraz, Iran

<sup>&</sup>lt;sup>b</sup> Islamic Azad University, Kazerun Branch, Kazerun, Iran

Corresponding author. Tel.: +98 917 3830620.

E-mail address: M.Noabad@sutech.ac.ir (M. Ghasemi).

| Nomen                            | clature                                                        | $\chi^{\text{lim}}$                                                                     | limit value of the dependent variable $x$                                                         |
|----------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| ····                             | <del></del>                                                    | $\delta_{ij}$                                                                           | phase difference of voltages between bus <i>i</i> and bus <i>j</i>                                |
|                                  |                                                                | ٥ij                                                                                     | (Rad)                                                                                             |
| Abbreviation                     |                                                                | $\lambda_{\rm P},  \lambda_{\rm V},  \lambda_{\rm Q},  \lambda_{\rm S}$ penalty factors |                                                                                                   |
| CHPED                            | combined heat and power economic dispatch                      | $\phi_h$                                                                                | weight factor related to the <i>h</i> th objective function                                       |
| DPOPF                            | distributed and parallel OPF                                   |                                                                                         | $\lambda_i$ emission coefficients of <i>i</i> th generator ( $\gamma_i$ (ton/h MW <sup>2</sup> ), |
| DQLF                             | decoupled quadratic load flow                                  | יוד נושטו                                                                               | $\beta_i$ (ton/h MW), $\alpha_i$ (ton/h) are related to SOX, and $\xi_i$ (ton/                    |
| ED                               | economic dispatch                                              |                                                                                         | h), $\lambda_i$ (1/MW) are related to NOX)                                                        |
| EED                              | environmental/economic dispatch                                |                                                                                         | $n_j, \lambda_l (1/N) $ are related to $NO\lambda_j$                                              |
| EPD                              | economic power dispatch                                        | Abbrowi                                                                                 | ation of algorithms                                                                               |
| IEEE                             |                                                                | ABC                                                                                     | artificial bee colony                                                                             |
|                                  | Institute of Electrical and Electronics Engineers              |                                                                                         | •                                                                                                 |
| OPF                              | optimal power flow                                             | BB-IVIO                                                                                 | PSO bare-bones multi-objective particle swarm                                                     |
| VAR                              | volt amperes reactive                                          | DDO                                                                                     | optimization                                                                                      |
| C                                |                                                                | BBO                                                                                     | biogeography-based optimization                                                                   |
| Symbols                          |                                                                | DE                                                                                      | differential evolution                                                                            |
| $\alpha_i, b_i, c_i$             |                                                                | ECSS                                                                                    | enhanced charged system search                                                                    |
| $B_{ij}$                         | susceptance of between bus $i$ and bus $j$ (p.u.)              | EGA                                                                                     | enhanced genetic algorithm                                                                        |
| $F_{Ci}(P_{Gi})$                 | fuel cost of the ith generator                                 | FCASO                                                                                   | fuzzy adaptive chaotic ant swarm optimization                                                     |
| $G_{ij}$                         | conductance between bus $i$ and bus $j$ (p.u.)                 | FFA                                                                                     | firefly algorithm                                                                                 |
| Gi                               | generating unit i                                              | FPSO                                                                                    | fuzzy evolutionary and particle swarm optimization                                                |
| MVA                              | mega volt-amperes                                              | GSA                                                                                     | gravitational search algorithm                                                                    |
| NB                               | number of buses                                                | HS                                                                                      | harmony search                                                                                    |
| NC                               | number of shunt VAR compensators                               | ICA                                                                                     | imperialist competitive algorithm                                                                 |
| NG                               | number of total generator                                      | IPSO                                                                                    | improved particle swarm optimization                                                              |
| NPQ                              | number of PQ buses                                             | ISS                                                                                     | improved scatter search                                                                           |
| NTL                              | number of transmission lines                                   | MDE                                                                                     | modified differential evolution                                                                   |
| NT                               | number of tap regulating transformers                          |                                                                                         | a-II modified non-dominated sorting genetic algorithm                                             |
| $P_{\mathrm{D}i}$                | active load demand of jth bus (MW)                             | MOHS                                                                                    | multi-objective harmony search                                                                    |
| $P_{Gi}$                         | generator active power output of generating unit <i>i</i>      | MOICA                                                                                   |                                                                                                   |
| <sup>1</sup> Gi                  | (MW)                                                           |                                                                                         | A modified MOICA                                                                                  |
| $P_{\mathrm{G}i}^{\mathrm{min}}$ | minimum active power output of <i>i</i> th generating unit     | MPSO                                                                                    | modified particle swarm optimization                                                              |
| ¹ Gi                             | (MW)                                                           |                                                                                         | SFLA hybrid of MPSO and SFLA                                                                      |
| pmax                             | maximum active power output of <i>i</i> th generating unit     | MSFLA                                                                                   | •                                                                                                 |
| $P_{Gi}^{\max}$                  | (MW)                                                           | NKEA                                                                                    | neighborhood knowledge-based evolutionary                                                         |
| 0                                | shunt VAR compensation of <i>i</i> th shunt compensator        | INIXLI                                                                                  | algorithm                                                                                         |
| $Q_{Ci}$                         | (MVAR)                                                         | SFLA                                                                                    | shuffle frog leaping algorithm                                                                    |
| 0                                | reactive load demand of jth bus (MVAR)                         | SQP                                                                                     | sequential quadratic programming                                                                  |
| $Q_{\mathrm{D}i}$                |                                                                | TLA                                                                                     |                                                                                                   |
| $Q_{Gi}$                         | generator reactive power output of unit generating <i>i</i> th | ILA                                                                                     | teaching learning algorithm                                                                       |
| omin                             | (MVAR)                                                         | Cl 1                                                                                    | - f ICA                                                                                           |
| $Q_{Gi}^{\min}$                  | minimum reactive power output of <i>i</i> th generating unit   |                                                                                         | s for ICA                                                                                         |
| e may                            | (MVAR)                                                         | BCS                                                                                     | best compromise solution                                                                          |
| $Q_{Gi}^{\max}$                  | maximum reactive power output of ith generating unit           | $C_n$                                                                                   | normalized cost of <i>n</i> th imperialist                                                        |
|                                  | (MVAR)                                                         | $c_n$                                                                                   | cost of <i>n</i> th imperialist                                                                   |
| $Q_{Ci}^{\min}$                  | minimum VAR injection limit of ith shunt compensator           | m                                                                                       | number of unconquered answers                                                                     |
|                                  | (MVAR)                                                         | $N_{\rm country}$                                                                       |                                                                                                   |
| $Q_{Ci}^{max}$                   | maximum VAR injection limit of ith shunt                       | $N_{\rm col}$                                                                           | size of initial population of colonies for imperialist                                            |
|                                  | compensator (MVAR)                                             | N.C.n                                                                                   | initial total number of colonies                                                                  |
| $S_{li}$                         | transmission line loading of ith branch (MVA)                  | $N_{\rm imp}$                                                                           | size initial population of empires                                                                |
| $S_{li}^{\max}$                  | maximum apparent power flow limit of ith branch                | $N_{\rm var}$                                                                           | number of parameters (control variables)                                                          |
|                                  | (MVA)                                                          | $N.T.C_n$                                                                               | normalized cost of <i>n</i> th empire                                                             |
| $T_i$                            | transformer taps settings of ith transformer (p.u.)            | T.C.n                                                                                   | total cost of the <i>n</i> th empire                                                              |
| $T_i^{\max}$                     | maximum tap settings limit of <i>i</i> th transformer (p.u.)   | U                                                                                       | uniform distribution                                                                              |
| $T_i^{\min}$                     | minimum tap settings limit of <i>i</i> th transformer (p.u.)   |                                                                                         |                                                                                                   |
| $V_{\mathrm{G}i}^{'}$            | generation bus voltages of <i>i</i> th generating unit (p.u.)  | Subscrip                                                                                | pts                                                                                               |
| $V_{Gi}^{\min}$                  | minimum generator voltage of <i>i</i> th generating unit       | C 1                                                                                     | shunt compensator                                                                                 |
| Gi                               | (p.u.)                                                         | D                                                                                       | load demand                                                                                       |
| $V_{\mathrm{G}i}^{\mathrm{max}}$ | maximum generator voltage of ith generating unit               | G                                                                                       | generating unit                                                                                   |
| Gl                               | (p.u.)                                                         | L                                                                                       | load                                                                                              |
| $V_i$                            | voltage of ith bus (p.u.)                                      | 1                                                                                       | line                                                                                              |
| $V_i$                            | voltage of ith bus (p.u.)                                      | P                                                                                       | active power                                                                                      |
| $V_{\mathrm{L}i}$                | load voltage of ith bus (p.u.)                                 | Q                                                                                       | reactive power                                                                                    |
| $V_{\mathrm{L}i}^{\mathrm{min}}$ | minimum load voltage of ith bus (p.u.)                         | S                                                                                       | transmission line loadings                                                                        |
| $V_{\mathrm{L}i}^{\mathrm{max}}$ | maximum load voltage of ith bus (p.u.)                         | 3<br>V                                                                                  | voltage                                                                                           |
| • Li                             | maximum road voitage of thi bus (p.u.)                         | v                                                                                       | voltage                                                                                           |

### Download English Version:

# https://daneshyari.com/en/article/8076037

Download Persian Version:

https://daneshyari.com/article/8076037

<u>Daneshyari.com</u>