Energy 77 (2014) 963-982

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Review

Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges

Abass A. Olajire^{*}

Industrial and Environmental Chemistry Unit, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P. M. B 4000, Ogbomoso, Oyo State, Nigeria

ARTICLE INFO

Article history: Received 10 July 2014 Received in revised form 24 August 2014 Accepted 2 September 2014 Available online 12 October 2014

Keywords: Petroleum industry Enhanced oil recovery Alkaline/surfactant/polymer flooding Interfacial properties Synergy in ASP flooding

ABSTRACT

Owing to the inefficiency of the conventional primary and secondary recovery methods to yield above 20–40% of the OOIP (original oil in place) as incremental oil, the need for EOR (Enhanced Oil Recovery) techniques to recover a higher proportion of the OOIP has become imperative. ASP (Alkaline/Surfactant/Polymer) is one of such techniques that has proven successful due to its ability to improve displacement and sweep efficiency. Alkaline–surfactant–polymer (ASP) flooding is a combination process in which alkali, surfactant and polymer are injected at the same slug. Because of the synergy of these three components, ASP is widely practiced in both pilot and field operations with the objective of achieving optimum chemistry at large injection volumes for minimum cost. Despite its popularity as a potentially cost-effective chemical flooding method, it is not without its limitations. This paper therefore focuses on the reviews of the application of ASP flooding process in oil recovery in the petroleum industry and its limitations in maximizing oil recovery from onshore and offshore reservoirs. Also discussed are technical solutions to some of these challenges.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The high prices of crude oil and the future energy demand worldwide have necessitated the needs for EOR (Enhanced Oil Recovery) processes. Surfactant-based process, especially ASP (Alkaline/Surfactant/Polymer) method has been identified as a cost-effective CEOR (Chemical Enhanced Oil Recovery) process vielding high recovery rates of above 20% in some oilfields like Daqing oilfield in China [1,2]. While the other chemical enhanced oil recovery (CEOR) methods have suffered several drawbacks like adsorptive surfactant loss in a plain surfactant flood or long duration of a dilute alkaline flood, the ASP promises to alleviate such problems [3]. The possession of a combined chemical phase behavior of the injected surfactant and the in-situ generated natural surfactant is one of key advantages of the ASP flood over other CEOR methods. Thus, significant developments have made ASP flooding a viable option for field enhanced oil recovery and more attractive than other CEOR methods [4,5].

* Tel.: +234 8033824264. E-mail address: olajireaa@yahoo.com.

http://dx.doi.org/10.1016/j.energy.2014.09.005 0360-5442/© 2014 Elsevier Ltd. All rights reserved.

ASP flooding is a technique which is developed out on the basis of alkali flooding, surfactant flooding and polymer flooding [6-8]with gradual enhancement of oil recovery by decreasing IFT (interfacial tension), increasing capillary number, enhancing microscopic displacing efficiency, improving mobility ratio and increasing macroscopic sweep efficiency [9]. ASP flooding utilizes three types of chemicals – alkali, surfactant and polymer to recover large amounts of waterflood residual oil. This process combines the macroscopic volumetric sweep efficiency improvement from the polymer due to reduction in water-oil mobility ratio with the ability of surfactants (both added and *in situ* soaps) to enhance microscopic sweep efficiency [10–12]. This enhancement results from dramatic reduction of oil-water interfacial tension (IFT) which increases capillary number (N_c) by orders of magnitude to the required range for efficient oil recovery [13,14]. Alkali forms soaps by reacting with naturally occurring organic acid in the crude oil, which interacts synergistically with added surfactant to produce ultra-low IFT [15-17]. The ultra-low IFT is obtained by surfactant distribution between oil and water phase, and surfactant arrangement at interface of oil/water. This is controlled by pH value and ionic strength [18,19]. The alkali injected with surfactant can reduce surfactant adsorption, play the role of ionic strength and lower IFT [20–22]. Addition of polymer increases the viscosity of its

ScienceDire

Nomenclature		N67	Neodol 67-7PO (propoxylated) sulfate
		NaOH	sodium hydroxide (or caustic soda)
AAS	alkyl—aryl sulphonate	Na_2CO_3	
Α	alkaline	NaHCO ₃	sodium bicarbonate
AOS	α-olefin sulphonate	NaBO ₂	sodium metaborate
AP	alkali–polymer		sodium sulfate
APG	alkyl polyglycosides	N _c	capillary number
API	American Petroleum Institute	Ν	original oil in place
	alkaline/surfactant/polymer	Np	accumulative oil recovered
AS	alkali–surfactant	Nb	bond number
Bo	formation volume factor of the oil	Nt	total trapping number
CaSO ₄	anhydrite (calcium sulfate)	OOIP	original oil in place
CaSO ₄ .2H	I_2O gypsum (calcium sulfate dihydrate)	O/W	oil-in-water
CaCO ₃	calcium carbonate	OPEX	operating cost
$Ca(OH)_2$	calcium hydroxide	Р	polymer
CEOR	chemical enhanced oil recovery	$P_{\rm r}$	permeability reduction factor
DETPMP	diethylenetriaminepenta (methylene phosphonic acid)	PAA	polyacrylic acid
	ethoxylated alcohol	PAM	polyacrylamide
EOR	enhanced oil recovery	PARCOM	Paris Commission
	ethoxylate	PASP	polyaspartates
	oil recovery efficiency	РО	propoxylate
	microscopic or displacement efficiency	PPCA	poly phosphono carboxylic acid
	macroscopic or volumetric sweep efficiency	PS	petroleum sulphonate
	areal displacement efficiency	PV	pore volume
	vertical displacement efficiency	R	resistance factor
	floating, production, storage and offloading	R _r	residual resistance factor
	floating storage and offloading	S	surfactant
	acceleration due to gravity	SAC	strong acid cation
a HA₀	concentration of acid in oil	SIS	select ion sequestration
HAw	concentration of acid in water	S _{oi}	initial oil saturation
	hydroxyl ethyl cellulose	Sor	residual oil saturation
	partially hydrolyzed polyacrylamide	$V_{\rm p}$	permeability variation
IFT	interfacial tension	WAG	water alternating gas injection
IOS	internal olefin sulfonate	WAC	weak acid cation
K _D	partition coefficient of HA between oil and water	μ_0	oil viscosity
K _D K _a	reaction constant	μ_{w}	water viscosity
	relative permeability of water	ν^{μ_W}	brine velocity (or Darcy's velocity)
	relative permeability of oil	ν λw	water mobility
	single phase permeability (absolute permeability)	λω	oil mobility
-	permeability of polymer solution	λ_{p}	polymer solution mobility
k _p V	permeability of water		mobility of water after polymer injection
	permeability of water after polymer injection	λ _{wp}	oil/water interfacial tension
k _{wp}	mobility ratio	$\sigma_{ m ow}$ heta	contact angle between the wetting phase and the rock
		0	
	magnesium hydroxide	Δho	oil/water density difference
Mg	magnesium		

aqueous phase [23], so that the mobility of aqueous phase decreases. Thus, the decrease in mobility ratio greatly increases sweep efficiency.

Substantial research works are being carried out worldwide on ASP flooding process by different researchers [24–29]. The development of ASP EOR technology and advances on surfactant chemistry have brought a renewed attention for chemical floods [30], especially to boost oil production in mature and waterflooded fields. Currently, there are numerous active ASP flooding projects worldwide, with the ASP flooding implemented at the Daqing field in China considered as one of the largest ASP ongoing projects [31]. Several current ASP oilfield applications are reported in the literature [31,32]. Meanwhile, disadvantages identified during the implementation process of the ASP flooding technology, such as, severe scaling in the injection lines and strong emulsification of the produced fluid [33–37] also limited its further application in the field. This study reviewed and assessed some of the recent advances and prospects made by the application of ASP flooding process in oil recovery in the petroleum industry and its limitations to maximizing oil recovery from onshore and offshore reservoirs. Also discussed is how these challenges could be technically addressed.

2. Enhanced oil recovery (EOR) processes

The ultimate goal of EOR processes is to increase the overall oil displacement efficiency, which is a function of microscopic and macroscopic displacement efficiency. Based on the overall materials balance of the reservoir, the overall oil recovery efficiency (E_{ro}) can be defined as:

Download English Version:

https://daneshyari.com/en/article/8076673

Download Persian Version:

https://daneshyari.com/article/8076673

Daneshyari.com