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a b s t r a c t

Due to the performance and certification criteria, complex mechanical systems have to taken into
account several constraints, which can be associated with a series of performance functions. Different
software are generally used to evaluate such functions, whose computational cost can vary a lot. In
conception or reliability analysis, we thus are interested in the identification of the boundaries of the
domain where all these constraints are satisfied, at the minimal total computational cost. To this end, the
present work proposes an iterative method to maximize the knowledge about these limits while trying
to minimize the required number of evaluations of each performance function. This method is based first
on Gaussian process surrogate models that are defined on nested sub-spaces, and second, on an original
selection criterion that takes into account the computational cost associated with each performance
function. After presenting the theoretical basis of this approach, this paper compares its efficiency to
alternative methods on an example.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The conception (or risk assessment) of complex mechanical
systems has to take into account a series of constraints. Such
constraints can be due to certification criteria, performance
objectives, cost limitations, and so on. In this context, the role of
simulation has kept increasing for the last decades, as one should
be able to predict if a given configuration of the system is likely to
fulfil these constraints without having to build it and to test it
experimentally. In many cases, the computation of these con-
straints is associated with a series of computer software, whose
physics can vary a lot. For instance, in the car industry, the con-
ception of a new vehicle can be subjected to constraints on its size
and weight, which are rather easy to compute, but also on its
emergency stopping distance, its crash or aerodynamic resistance,
which can be much more difficult to evaluate.

To be more precise, let us consider a particular system, S , which
design is supposed to be characterized by a vector of d parameters,
x¼ ðx1;…; xdÞARd. It is assumed that the system constraints can
be evaluated from the computation of NZ1 performance func-
tions, gn;1rnrN

� �
, which respective numerical cost (in CPU

time for instance), Cn, are supposed to be sorted in an ascending
order:

C1rC2r⋯rCN : ð1Þ

Thus, the conception domain, which is denoted by Ω and
which defines the set of admissible designs for the considered
system, can be written as:

Ω¼ ⋂
N

n ¼ 1
Ωn; Ωn ¼ fxARd; gnðxÞr0g: ð2Þ

Such a domain is a key element to perform optimizations of the
system restricted to admissible design solutions, while being closely
linked to reliability analysis prospects, as its complementary, Rd⧹Ω,
corresponds to the failure domain of the system. Hence, for the last
decades, the identification ofΩ, or of its boundary, ∂Ω, has motivated
the development of several methods, which can be sorted in twomain
categories: the direct and the indirect methods. Among the direct
methods, the first-order or second-order reliability methods (FORM/
SORM) approximate ∂Ω as a linear or a second-order polynomial
function [9,14,13,4]. When confronted to applications where the limit
state is multimodal or is strongly non-linear, alternative methods
based on more advanced approximations have been introduced, such
as support vector machines (SVM) techniques [19,17,11] and methods
based on generalized least-squares linear regression [18,10].

On the other hand, the indirect methods focus on the approx-
imation of the performance functions to deduce in a second step
the searched boundary. Among these methods, the Gaussian pro-
cess regression (GPR) method, or kriging, keeps playing a major
role, which is due to its ability to provide a robust approximation of
∂Ω, that is to say for which precision can be quantified [15,12,16,7].
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Based on this very efficient tool, the idea of this paper is to
present a sequential sampling strategy to minimize the uncer-
tainties about boundary ∂Ω, at the minimal computational budget.
In particular, the proposed strategy will take into account the
computational costs associated with the evaluation of each func-
tion, fC1;…;CNg.

The outline of this work is as follows. First, Section 2 presents
the theoretical bases of the Gaussian process regression (GPR) and
its use for the identification of limit states. The proposed method is
then introduced in Section 3. Then, the efficiency of the method is
illustrated on an analytic example in Section 4.

2. Surrogate models for system reliability

The Gaussian process regression is based on the assumption
that each performance function, gn, 1rnrN, can be seen as a
sample path of a stochastic process, which is supposed to be
Gaussian for the sake of tractability. By conditioning this Gau-
ssian process by a set of QZ1 code evaluations, S learn ¼
ðxðqÞ; gnðxðqÞÞÞ;1rqrQ
� �

, it is possible to define very interesting
predictors for the value of gn in any non-computed point of the
input space. These predictors of functions gn at any x in Rd, which
are respectively denoted by bgnðxÞ, are Gaussian by construction,bgnðxÞ �N ðbμnðxÞ; bσ2

nðxÞÞ, and we refer to [15,16] for further details
about the expression of the conditioned means, bμnðxÞ, and stan-
dard deviations, bσ2

nðxÞ. Such a predictor interpolates in the sense
that, for all 1rqrQ ,

PðbgnðxðqÞÞ ¼ gnðxðqÞÞÞ ¼ 1: ð3Þ
It is moreover sequentially improved: for all x in Rd, the higher is
Q, the smaller the integrated mean square error (IMSE),
E
R
Rd ðgnðxÞ�bgnðxÞÞ2dx

h i
, is supposed to be. Under the assumption

that bμn is a good predictor of gn, a good approximation of ∂Ω is
therefore given by the elements of Rd such that PðbgnðxÞr
0Þ ¼PðbgnðxÞZ0Þ ¼ 1=2, which yields:

∂Ωn �d∂Ωn ¼ xARd; bμnðx
n o

¼ 0: ð4Þ

Function bσn can then be used to quantify the precision of such
an approximation d∂Ωn, as the smaller bσnðxÞ is, the more chance
there is for gnðxÞ and bμnðxÞ to be close. Improving the knowledge
about d∂Ωn amounts therefore at adding new points xðnÞ;⋆ to the
learning set S learn, which have to be chosen according to a specific
criterion to minimize the total computational cost for a given
precision. Such new points are generally chosen iteratively such
that:

xðnÞ;⋆ ¼ arg max
xARd ; bμnðxÞ ¼ 0

bσnðxÞ; ð5Þ

that is to say where the expected value of gn is the closest to the
threshold ðbμnðxÞ ¼ 0Þ with the largest uncertainty. Solving the
problem defined by Eq. (5) being complex, two adaptations have
been proposed to provide a balance between exploration and
exploitation. On the first hand, the Efficient Global Reliability
Analysis (EGRA) method (see [3] for further details) replaces such
a constrained maximization of the standard deviation bσn, by the
unconstrained maximization of a learning function called Expec-
ted Feasibility Function, EF, which writes:

EFðx;nÞ ¼ E ϵðxÞ�min j bgnðxÞj ; ϵðxÞ
� �� �

; ð6Þ
where ϵ is a function chosen to focus the search in the immediate
vicinity of ∂Ωn (for instance, ϵ can be chosen proportional to bσn).
Details on the implementation and the maximization of function
EF can be found in [3]. On the other hand, the Active learning and
Kriging-based Monte-Carlo Simulation (AK-MCS) method (see [6])

proposes a discrete adaptation of the optimization problem
defined by Eq. (5):

xðnÞ;⋆ � arg min
zA fzð1Þ ;…;zðνÞ

j bμnðzÞjbσnðzÞ
; ð7Þ

where zð1Þ;…; zðνÞ
� �

is a set of ν vectors that are randomly chosen
in Rd. Therefore, both former methods realize a trade-off between
exploration of each boundary ∂Ωn of Ωn and global uncertainty
reduction, at a relatively small numerical cost.

When interested in identifying the boundary of the intersection
of domains ðΩnÞ1rnrN , a very simple strategy would be to use
either the EGRA or the AK-MCS iterative method to train each
model gn to sufficient accuracy, and then identify space
Ω¼Ω1 \ ⋯ \ ΩN , as:

Ω¼ xARd; max
1rnrN

gnðxÞr0
� 	

� xARd; max
1rnrN

bμnðxÞr0
� 	

:

ð8Þ
However, it is clear that such a procedure can lead to many

useless evaluations of the performance functions. For instance, if
Ω1 �Ω2, no evaluations of g2 are needed to analyse the boundary
of Ω. To limit the number of calls to performance functions that
have little or no influence on the definition of ∂Ω, it would seem
interesting to directly apply the EGRA or the AK-MCS methods to
the composite function gmax ¼max1rnrNgn. However, it appears
that such an approach is affected by several problems. Indeed,
even if functions gn are regular, gmax is generally highly irregular
and its modeling by a GPR-based surrogate model can be difficult
and lead to additional expense. Hence, instead of working on the
aggregation of the performance functions, it appears to be more
efficient to still consider the approximations of each performance
function gn by a GPR-based surrogate model, and choose a selec-
tion criterion that is adapted to the system case. To this end, let n⋆

be the index such that, for all x in Rd,

n⋆ðxÞ ¼ arg max
1rnrN

bμnðxÞ: ð9Þ

Therefore, it has been proposed in [2] and [8] to choose the
new evaluation point, x⋆, such that x↦EFðx;n⋆ðxÞÞ is maximal, or
such that :

x⋆ ¼ arg min
zA fzð1Þ ;…;zðνÞg

j bμn⋆ðzÞðzÞjbσn⋆ðzÞðzÞ
; ð10Þ

to accurately adapt the EGRA and the AK-MCS procedures to the
system case, respectively. At this new point x⋆, only the true
performance function, x↦gn⋆ðxÞðxÞ, has to be computed, such that
only a small number of calls to true performance functions that
have little influence on ∂Ω should be made.

It can be noticed that such pointwise strategies do not take into
account in their selection criteria the fact that the new evaluation
point will bring additional information on its neighbourhood. In
contract, Stepwise Uncertainty Reduction (SUR) approaches [1]
propose to choose the new evaluation point in order to minimize
the expected value of a well-chosen measure of the uncertainty
about the search domain. For instance, if we denote byVðΩ;mÞ the
variance of the volume of Ω, which is conditioned by all the
available code evaluations at step m, then the new point, xn, can be
chosen such that:

ðxn;nnÞ ¼ arg min
xmþ 1 ARd ;1rnrN

E VðΩ;mþ1Þjgnðxmþ1Þ ¼ bgnðxmþ1Þ� �
:

ð11Þ
Such methods based on global measures of uncertainty of Ω

have been shown to outperform pointwise approaches for the
identification of excursion set on a series of applications based on
a single performance function [1]. In spite of recent algorithmic
developments [5], the main drawback of these methods is the fact
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