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This work presents a strategy for dealing with reliability-based design problems of a class of linear and
nonlinear finite element models under stochastic excitation. In general, the solution of this class of
problems is computationally very demanding due to the large number of finite element model analyses
required during the design process. A model reduction technique combined with an appropriate opti-
mization scheme is proposed to carry out the design process efficiently in a reduced space of generalized
coordinates. In particular, a method based on component mode synthesis is implemented to define a
reduced-order model for the structural system. The re-analyses of the component or substructure modes
as well as the re-assembling of the reduced-order system matrices due to changes in the values of the
design variables are avoided. The effectiveness of the proposed model reduction technique in the context
of reliability-based design problems is demonstrated by two numerical examples.
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1. Introduction

Structural design via deterministic mathematical programming
techniques has been widely accepted as a viable tool for engi-
neering design [1]. However, in most structural engineering
applications response predictions are based on models involving
uncertain parameters. This is due to a lack of information about
the value of system parameters external to the structure such as
environmental loads or internal such as system behavior. Under
uncertain conditions the field of reliability-based optimization
provides a realistic and rational framework for structural optimi-
zation which explicitly accounts for the uncertainties [2-4]. In the
present work, structural design problems involving finite element
models under stochastic loading are considered. The design pro-
blem is formulated as the minimization of an objective function
subject to multiple design requirements including standard and
reliability constraints. The probability that any response of interest
exceeds in magnitude some specified threshold level within a
given time duration is used to characterize the system reliability.
This probability is commonly known as the first excursion prob-
ability [5]. The corresponding reliability problem is expressed in
terms of a multidimensional probability integral involving a large
number of uncertain parameters. Reliability-based design for-
mulations require advanced and efficient tools for structural
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modeling, reliability analysis and mathematical programming.
Modeling and analysis techniques of structural systems are well
established and sufficiently well documented in the literature [6].
On the other hand, several tools for assessing structural reliability
have lately experienced a substantial development providing
solution of involved systems [7-9]. In the field of reliability-based
optimization of stochastic dynamical systems several procedures
have been recently developed allowing the solution of problems
dealing with finite element models of relatively small number of
degrees of freedom [10-14]. However, the application of
reliability-based optimization to stochastic dynamical systems
involving medium/large finite element models remains somewhat
limited. In fact, the solution of reliability-based design problems of
stochastic finite element models requires a large number of finite
element analyses to be perform during the design process. These
analyses correspond to finite element re-analyses over the design
space (required by the optimizer), and system responses over the
uncertain parameter space (required by the simulation technique
for reliability estimation). Consequently, the computational
demands depend highly on the number of finite element analyses
and the time taken for performing an individual finite element
analysis. Thus, the computational demands in solving reliability-
based design problems may be large or even excessive.

In this context, it is the main objective of this work to present
a framework for integrating a model reduction technique into
the reliability-based design formulation of a class of stochastic
linear and nonlinear finite element models. The goal is to reduce
the time consuming operations involved in the re-analyses and


www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2016.01.003
http://dx.doi.org/10.1016/j.ress.2016.01.003
http://dx.doi.org/10.1016/j.ress.2016.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2016.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2016.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2016.01.003&domain=pdf
mailto:hector.jensen@usm.cl
http://dx.doi.org/10.1016/j.ress.2016.01.003

H.A. Jensen et al. / Reliability Engineering and System Safety 149 (2016) 204-217 205

dynamic responses of medium/large finite element models. Spe-
cifically, a model reduction technique based on substructure cou-
pling for dynamic analysis is considered in the present imple-
mentation [15]. The proposed method corresponds to a general-
ization of substructure coupling applicable to systems with loca-
lized nonlinearities. The technique includes dividing the linear
components of the structural system into a number of sub-
structures obtaining reduced-order models of the substructures,
and then assembling a reduced-order model for the entire struc-
ture. In summary, the novel aspect of this contribution involves a
strategy for integrating a model reduction technique into the
reliability-based design formulation of medium/large finite ele-
ment models under stochastic excitation. This represents an
additional area of application of substructure coupling which has
been already used for uncertainty management in structural
dynamics with applications in areas such as uncertainty analysis,
finite element model updating, and reliability sensitivity analysis
[16-19]. The organization of this work is as follows. The for-
mulation of the reliability-based design problem is presented in
Section 2. Next, the characterization of the structural systems of
interest is considered in Section 3. Implementation issues such as
reliability estimation, optimization strategy and model reduction
are discussed in Section 4. The mathematical background of the
model reduction technique is outlined in Section 5. The integration
of the model reduction technique into the design process is dis-
cussed in Section 6. The effectiveness of the proposed strategy is
demonstrated in Section 7 by the reliability-based design of two
structural systems. The paper closes with some conclusions and
final remarks.

2. Problem formulation

The reliability-based design problem is characterized in terms
of the following constrained non-linear optimization problem

Ming C(@)
st. g@<0 i=1,..,n
Pr(@)-P; <0, i=1,..n
0cO 1

where 6,0;,i=1,...,n; is the vector of design variables with side
constraints Hf <0; <6}, C(0) is the objective function, g;(@) <0,i=1
,...,N¢ are standard constraints, and Pr,(6)— P, < 0 are the reliability
constraints which are defined in terms of the failure probability
functions Pr,(@) and target failure probabilities Py, i=1,...,n,. It is
assumed that the objective and constraint functions are smooth
functions of the design variables. The objective function C(@) can be
defined in terms of initial, construction, repair or downtime costs,
structural weight, or general cost functions. The standard constraints
are related to general design requirements such as geometric condi-
tions, material cost components, and availability of materials. On the
other hand, the reliability constraints are associated with design spe-
cifications characterized through the use of reliability measures given
in terms of failure probabilities with respect to specific failure criteria.
For structural systems under stochastic excitation the probability that
design conditions are satisfied within a particular reference period T
provides a useful reliability measure [5]. Such measure is referred as
the first excursion probability and quantifies the plausibility of the
occurrence of unacceptable behavior (failure) of the structural system.
In this context, a failure event F; can be defined as F;(@,z)=
di(@,z) > 1, where d; is the so-called normalized demand function
defined as d;(@,z) = max;_; _jmax;. [O,T]|r]':(t, 0, z)|/rf, where z € 2,
c R™ is the vector of uncertain variables involved in the problem
(characterization of the excitation), ri(t, 0.2z),j=1,....1 are the

response functions associated with the failure event F;, and rjf is the

acceptable response level for the response 1. It is clear that the
responses 7;(t, 0, z) are functions of time (due to the dynamic nature of
the excitation), the design vector @, and the random vector z. These
response functions are obtained from the solution of the equation of
motion that characterizes the structural model (see next Section). The
uncertain variables z are modeled using a prescribed probability
density function p(z). This function indicates the relative plausibility of
the possible values of the uncertain parameters z e £2,. The probability
of failure evaluated at the design @ is formally defined as

i(t,0
Ppi(ﬂ):P{max maxL_*’z)l>1 )

j=1..lte[0T] r}
where P[] is the probability that the expression in parenthesis is true.
Equivalently, the failure probability function evaluated at the design @
can be written in terms of the multidimensional probability integral

Pr(0) = / p(@) dz 3)
di@.z) > 1

It is noted that the above formulation can be extended in a
direct manner if the cost of partial or total failure consequences is
also included in the definition of the objective function. It is also
noted that constraints related to statistics of structural responses
(i.e. mean value and/or higher-order statistical moments) can be
included in the formulation as well. Thus, the above formulation is
quite general in the sense that different reliability-based optimi-
zation formulations can be considered.

3. Mechanical modeling

A quite general class of structural dynamical systems can be
cast into the following equation of motion

Mii(t) -+ Cu(t) + Ku(t) = ku(t), u(t), 7(t)) + £(t) 4)

where u(t) denotes the displacement vector of dimension n, a(t)
the velocity vector, u(t) the acceleration vector, k(u(t), u(t), z(t))
the vector of non-linear restoring forces, z(t) the vector of a set of
variables which describes the state of the nonlinear components,
and f(t) the external force vector. The matrices M, C, and K
describe the mass, damping, and stiffness, respectively. Note that
some of the matrices and vectors involved in the equation of
motion depend on the vector of design variables @ and/or the
uncertain system parameters z and therefore the solution is also a
function of these quantities. The explicit dependence of the
response on these quantities is not shown here for simplicity in
notation. The evolution of the set of variables z(t) is described by a
first-order differential equation

(1) = ku(t), u(t), 7(t) )

where k represents a non-linear vector function. This character-
ization allows to model different types of nonlinearities including
hysteresis and degradation [20,21]. From Eq. (5) it is seen that the
set of variables z(t) is a function of the displacements u(t) and the
velocities u(t), i.e. 7(u(t),u(t)). Therefore, Eqs. (4) and (5) con-
stitute a system of coupled non-linear differential equations for
u(t) and z(t). The previous formulation is particularly well suited
for cases where most of the components of the structural system
remain linear and only a small part behaves in a nonlinear manner.
Such cases are of particular interest in the present work, that is,
linear finite element models with localized nonlinearities. The
external force vector f(t) is modeled as a non-stationary stochastic
process. Depending on the application under consideration dif-
ferent methodologies are available for generating these types of
processes. Such methodologies include filtered Gaussian white
noise processes, stochastic processes compatible with power
spectral densities, point source-based models, and record-based
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